Квадрат
а)Сторона квадрата равна 10. Найдите его площадь.
б) Периметр квадрата равен 40. Найдите площадь квадрата.
а
1
0
0
№ 1
х
3
х
1
0
а
- 4а = 40, а = 10
- S = 100
1
0
0
№ 2
х
3
х
1
0
Площадь прямоугольника
В прямоугольнике одна сторона равна 6, а диагональ равна 10. Найдите площадь прямоугольника .
A
Решение:
d
b
B
D
a
4
8
№ 3
х
3
х
1
0
Площадь прямоугольника
В прямоугольнике диагональ равна 10, угол между ней и одной
из сторон равен 30 0 , длина этой стороны 5 3 . Найдите
площадь прямоугольника. В ответе запишите S 3.
A
Решение:
d
b
D
B
a
7
5
№ 4
Можно использовать др.способы решения.
х
3
х
1
0
Параллелограмм
Одна из сторон параллелограмма равна 12, другая равна 5, а один из углов — 45 0 . Найдите площадь параллелограмма. Ответ запишите результатом S 2 .
b
Решение:
a = 12 b = 5 = 45 0
а
S = 12 . 5 . sin45 0
6
0
№ 5
х
3
х
1
0
Параллелограмм
Одна из сторон параллелограмма равна 12,
другая равна 5, а косинус одного из углов равен
Найдите площадь параллелограмма.
b
Решение:
a = 12 b = 5
1) Пусть cos = . Найдем sin
а
2) S = 12 . 5 . 1/3 = 20
2
0
№ 6
х
3
х
1
0
Ромб
Сторона ромба равна 5, а диагональ равна 6. Найдите площадь ромба.
B
АС = d 1 BD = d 2
Решение:
O
Пусть АВ = 5, АС = d 1 = 6 .
Найдем d 2 = BD.
C
A
В АОВ ( О = 90 0 ): АВ = 5 (гипотенуза)
АО = АС : 2 = 3 (катет)
По т.Пифагора ВО = 4, BD = d 2 = 2BO = 8
S = 0,5 . 6 . 8 = 24
D
2
4
№ 7
х
3
х
1
0
Ромб
Периметр ромба периметр равен 40, а один из углов равен 30 0 . Найдите площадь ромба.
B
Решение:
Пусть P = 40 , B = 30 0 .
Найдем а .
C
A
4а = 40, а = 10
S = 10 2 . sin30 0 = 100 . 0,5 = 50
D
5
0
№ 8
х
3
х
1
0
Трапеция
Основания трапеции равны 18 и 12, одна из боковых сторон равна 4 2 , а угол между ней и одним из оснований равен 135 0 . Найдите площадь трапеции.
b
B
C
c
h
Решение:
D
A
Пусть a = 1 8, b = 12, c = 4 3, АВС = 135 0 .
Найдем ВК = h
K
а
1) В АВК ( К = 90 0 ): АВ = 4 2 (гипотенуза),
АВК = АВС - СВК = 135 0 – 90 0 = 45 0 ,
6
0
№ 9
х
3
х
1
0
Трапеция
Основания трапеции равны 18 и 12, одна из боковых сторон равна 6, а синус угла между ней и одним из оснований равен 1/3 . Найдите площадь трапеции.
b
B
C
c
h
Решение:
D
A
Пусть a = 1 8, b = 1 2 , c = 6, sin В AK = 1/3 .
Найдем ВК = h
K
а
1) В АВК ( К = 90 0 ): АВ = 6 (гипотенуза),
3
0
№ 10
х
3
х
1
0

презентация к уроку "Площади фигур" (465 KB)

