Меню
Разработки
Разработки  /  Математика  /  Кабинет  /  Материал по математике "Ломоносов и математика"

Материал по математике "Ломоносов и математика"

Документ содержит интересные исторические факты по данной теме.
18.01.2016

Описание разработки

Ломоносов не оставил после себя работ, которые можно было бы в строгом смысле слова назвать математическими, однако без понимания его отношения к математике представление о его научном наследии было бы неполным. Общеизвестно высказывание, приписываемое Ломоносову: «Математику изучать надобно, поскольку она в порядок ум приводит». Так кратко и выразительно может сформулировать свою мысль только человек, не просто относящийся к математике с почтением, но и в силу собственного опыта понимающий её роль в жизни, возможности её приложений в самых разных областях знания.

Ломоносов получил фундаментальную для своего времени подготовку по математике и естественным наукам. В Марбургском университете он слушал лекции Х. Вольфа по математике, астрономии, алгебре, физике, механике, логике и другим дисциплинам, а в дополнение к перечисленному брал ещё уроки арифметики, геометрии и тригонометрии. Примечательно, что свои первые работы там Ломоносов подписывал как «студент математики и философии».

После возвращения в Россию он продолжал заниматься точными науками и совершенствовать свои познания в области математики, о чём говорит, в частности, его письмо в канцелярию Академии наук: «Потребна мне, нижайшему, для упражнения и дальнейшего происхождения в науках математических Невтонова «Физика» и «Универсальная арифметика», которые обе книги находятся в Книжной академической лавке». В своих работах Ломоносов постоянно ссылается на труды Вольфа, Ньютона, Эйлера, Д. Бернулли и других учёных того времени.

Особые отношения связывали Ломоносова с Эйлером, труды которого он изучал по мере выхода их в свет (известно, что он хорошо знал фундаментальную работу Эйлера «Введение в анализ бесконечно малых») . Из сохранившейся переписки двух академиков известно, что Эйлер высоко ценил работы Ломоносова, начиная с его первых шагов в науке. В одном из его отзывов, в частности, говорится: «Все сии сочинения не токмо хороши, но и превосходны, ибо он изъясняет физические и химические материи самые нужные и трудные, кои совсем неизвестны и невозможны были к истолкованию самым остроумным ученым людям, с таким основательством, что я совсем уверен о точности его доказательств. … Желать надобно, чтобы все прочие Академии были в состоянии показать такие изобретения, которые показал господин Ломоносов».

В 1741 году Ломоносов написал работу «Elementa Chimiae Mathematicae» («Элементы математической химии», на латыни) . Она не была издана и сохранилась в черновиках, которые позволяют судить о том, что Ломоносов хотел создать целый трактат по математической химии, наподобие труда Philosophiae Naturalis Principia Mathematicae Ньютона. Можно предположить, что речь шла об изложении химии на прочных аксиоматических основаниях, взятых из наблюдений и экспериментов, затем об описании явлений на математическом языке (сейчас бы мы сказали о создании математической модели) и сравнении результатов вычислений с экспериментом (т. е. проверка модели на реальных, опытных данных) .

Успехи в химической науке, по мысли Ломоносова, возможны только с применением математики. В «Слове о пользе химии» он прямо говорит об этом, указывая на необходимость превратить химию из искусства, которым она считалась в его время, в точную науку. По словам Ломоносова, «к сему требуется весьма искусный Химик и глубокий Математик в одном человеке … Не такой требуется Математик, который только в трудных выкладках искусен, но который в изобретениях и в доказательствах привыкнув к математической строгости, в натуре сокровенную правду точным и непоползновенным порядком вывесть умеет».

Рассуждая о химии, Ломоносов фактически излагает свои взгляды на необходимость математики для успешного развития естественно-научного знания: наука должна строиться на прочном аксиоматическом основании, выводы должны быть в духе математических рассуждений, а проверяться всё должно опытом, экспериментом, то есть привычка математика строго рассуждать должна приводить к развитию теории на основе экспериментальных фактов.

Называя математику «прекраснейшей наукой», Ломоносов признавал за ней «первенство в человеческом знании».

Материал по математике Ломоносов и математика

Ломоносов и математика

Большое значение Ломоносов придавал математике, рекомендуя широко применять математические методы в других науках. Математику, — писал ученый, — ”почитаю за высшую степень человеческого познания, но только рассуждаю, что ее в своем месте после собранных наблюдений употреблять должно”. Эти слова созвучны нашему веку, когда методы математики получили большое распространение как в естественных, так и в гуманитарных науках.

Математика — это наука, исторически основанная на решении задач о количественных и пространственных соотношениях реального мира путём идеализации необходимых для этого свойств объектов и формализации этих задач.

Слово “математика” произошло от др. -греч. μάθημα (máthēma) , что означает изучение, знание, наука, и др. -греч. μαθηματικός (mathēmatikós) , первоначально означающего восприимчивый, успевающий, позднее относящийся к изучению, впоследствии относящийся к математике. В частности, μαθηματικ τέχνη (mathēmatikḗ tékhnē) , на латыни ars mathematica, означает искусство математики.

Математика изучает воображаемые, идеальные объекты и соотношения между ними, используя формальный язык. В общем случае математические понятия и теоремы не обязательно имеют соответствие чему-либо в физическом мире. Главная задача прикладного математика — создать математическую модель, достаточно адекватную исследуемому реальному объекту. Задача математика-теоретика — обеспечить достаточный набор удобных средств для достижения этой цели.

Изучение внутриматематических объектов, как правило, происходит при помощи аксиоматического метода: сначала для исследуемых объектов формулируются список основных понятий и аксиом, а затем из аксиом с помощью правил вывода получают содержательные теоремы, в совокупности образующие математическую модель.

С началом книгопечатания в России стали выпускаться и математические сочинения. Первое из них было отпечатано в 1682 г. в Москве и называлось ”Считание удобное, которым всякий человек купующий или продающий, зело удобно изыскати может, число всякие вещи”. Это, собственно, сборник таблиц умножения, до 100 x 100. В ней употреблялись ещё славянские цифры. Второе издание (1714 г. , Петербург) напечатано уже гражданским шрифтом и индийскими цифрами. Знаменательно, что первое издание спросом не пользовалось, а второе разошлось заметным для того времени тиражом более 700 экземпляров.

Михаил Васильевич Ломоносов является одним из великих учёных, которого без сомнений можно поставить на одно из первых мест среди разносторонне одаренных людей в истории человечества. В 1741 году Ломоносов написал сочинение, изумившее всех своим названием: Elementa Chimiae Mathematicae (”Элементы математической химии”, на латыни) . Химия и математика! Современникам Ломоносова одно сопоставление этих слов казалось нелепым.

Весь материал – смотрите документ.

Содержимое разработки





Ломоносов не оставил после себя работ, которые можно было бы в строгом смысле слова назвать математическими, однако без понимания его отношения к математике представление о его научном наследии было бы неполным. Общеизвестно высказывание, приписываемое Ломоносову: «Математику изучать надобно, поскольку она в порядок ум приводит». Так кратко и выразительно может сформулировать свою мысль только человек, не просто относящийся к математике с почтением, но и в силу собственного опыта понимающий её роль в жизни, возможности её приложений в самых разных областях знания.

Ломоносов получил фундаментальную для своего времени подготовку по математике и естественным наукам. В Марбургском университете он слушал лекции Х.Вольфа по математике, астрономии, алгебре, физике, механике, логике и другим дисциплинам, а в дополнение к перечисленному брал ещё уроки арифметики, геометрии и тригонометрии. Примечательно, что свои первые работы там Ломоносов подписывал как «студент математики и философии».

После возвращения в Россию он продолжал заниматься точными науками и совершенствовать свои познания в области математики, о чём говорит, в частности, его письмо в канцелярию Академии наук: «Потребна мне, нижайшему, для упражнения и дальнейшего происхождения в науках математических Невтонова «Физика» и «Универсальная арифметика», которые обе книги находятся в Книжной академической лавке». В своих работах Ломоносов постоянно ссылается на труды Вольфа, Ньютона, Эйлера, Д. Бернулли и других учёных того времени.

Особые отношения связывали Ломоносова с Эйлером, труды которого он изучал по мере выхода их в свет (известно, что он хорошо знал фундаментальную работу Эйлера «Введение в анализ бесконечно малых»). Из сохранившейся переписки двух академиков известно, что Эйлер высоко ценил работы Ломоносова, начиная с его первых шагов в науке. В одном из его отзывов, в частности, говорится: «Все сии сочинения не токмо хороши, но и превосходны, ибо он изъясняет физические и химические материи самые нужные и трудные, кои совсем неизвестны и невозможны были к истолкованию самым остроумным ученым людям, с таким основательством, что я совсем уверен о точности его доказательств. … Желать надобно, чтобы все прочие Академии были в состоянии показать такие изобретения, которые показал господин Ломоносов».

В 1741 году Ломоносов написал работу «Elementa Chimiae Mathematicae» («Элементы математической химии», на латыни). Она не была издана и сохранилась в черновиках, которые позволяют судить о том, что Ломоносов хотел создать целый трактат по математической химии, наподобие труда Philosophiae Naturalis Principia Mathematicae Ньютона. Можно предположить, что речь шла об изложении химии на прочных аксиоматических основаниях, взятых из наблюдений и экспериментов, затем об описании явлений на математическом языке (сейчас бы мы сказали о создании математической модели) и сравнении результатов вычислений с экспериментом (т.е. проверка модели на реальных, опытных данных).

Успехи в химической науке, по мысли Ломоносова, возможны только с применением математики. В «Слове о пользе химии» он прямо говорит об этом, указывая на необходимость превратить химию из искусства, которым она считалась в его время, в точную науку. По словам Ломоносова, «к сему требуется весьма искусный Химик и глубокий Математик в одном человеке … Не такой требуется Математик, который только в трудных выкладках искусен, но который в изобретениях и в доказательствах привыкнув к математической строгости, в натуре сокровенную правду точным и непоползновенным порядком вывесть умеет».

Рассуждая о химии, Ломоносов фактически излагает свои взгляды на необходимость математики для успешного развития естественно-научного знания: наука должна строиться на прочном аксиоматическом основании, выводы должны быть в духе математических рассуждений, а проверяться всё должно опытом, экспериментом, то есть привычка математика строго рассуждать должна приводить к развитию теории на основе экспериментальных фактов.

Называя математику «прекраснейшей наукой», Ломоносов признавал за ней «первенство в человеческом знании».

Ломоносов и математика

Большое значение Ломоносов придавал математике, рекомендуя широко применять математические методы в других науках. Математику, — писал ученый, — ”почитаю за высшую степень человеческого познания, но только рассуждаю, что ее в своем месте после собранных наблюдений употреблять должно”. Эти слова созвучны нашему веку, когда методы математики получили большое распространение как в естественных, так и в гуманитарных науках.

Математика — это наука, исторически основанная на решении задач о количественных и пространственных соотношениях реального мира путём идеализации необходимых для этого свойств объектов и формализации этих задач.

Слово “математика” произошло от др.-греч. μάθημα (máthēma), что означает изучение, знание, наука, и др.-греч. μαθηματικός (mathēmatikós), первоначально означающего восприимчивый, успевающий, позднее относящийся к изучению, впоследствии относящийся к математике. В частности, μαθηματικ τέχνη (mathēmatikḗ tékhnē), на латыни ars mathematica, означает искусство математики.

Математика изучает воображаемые, идеальные объекты и соотношения между ними, используя формальный язык. В общем случае математические понятия и теоремы не обязательно имеют соответствие чему-либо в физическом мире. Главная задача прикладного математика — создать математическую модель, достаточно адекватную исследуемому реальному объекту. Задача математика-теоретика — обеспечить достаточный набор удобных средств для достижения этой цели.

Изучение внутриматематических объектов, как правило, происходит при помощи аксиоматического метода: сначала для исследуемых объектов формулируются список основных понятий и аксиом, а затем из аксиом с помощью правил вывода получают содержательные теоремы, в совокупности образующие математическую модель.

С началом книгопечатания в России стали выпускаться и математические сочинения. Первое из них было отпечатано в 1682 г. в Москве и называлось ”Считание удобное, которым всякий человек купующий или продающий, зело удобно изыскати может, число всякие вещи”. Это, собственно, сборник таблиц умножения, до 100 x 100. В ней употреблялись ещё славянские цифры. Второе издание (1714 г., Петербург) напечатано уже гражданским шрифтом и индийскими цифрами. Знаменательно, что первое издание спросом не пользовалось, а второе разошлось заметным для того времени тиражом более 700 экземпляров.

Михаил Васильевич Ломоносов является одним из великих учёных, которого без сомнений можно поставить на одно из первых мест среди разносторонне одаренных людей в истории человечества. В 1741 году Ломоносов написал сочинение, изумившее всех своим названием: Elementa Chimiae Mathematicae (”Элементы математической химии”, на латыни). Химия и математика! Современникам Ломоносова одно сопоставление этих слов казалось нелепым.

Математическая химия — раздел теоретической химии, область исследований, посвящённая новым применениям математики к химическим задачам. Основная область интересов — это математическое моделирование химических явлений и процессов. Критерием истины в математической химии являются математическое доказательство, вычислительный эксперимент и сравнение результатов с экспериментальными данными. Важнейшую роль в математической химии играет математическое моделирование.

Во всех научных трудах Ломоносов применял строго логический метод, принятый в математике и других точных науках. Он начинал с описания наблюдений над фактами и, обобщая эти наблюдения, приходил к аксиомам — положениям, не требующим доказательств. Основываясь на аксиомах, он формулировал и доказывал теоремы и разбирал все вытекающие из них следствия. А эти следствия проверял затем опытом. Тем самым Ломоносов не давал фантазии увлечь себя в область беспочвенных догадок: факты, с которых он начинал опыты и которыми заканчивал рассуждения, прочно привязывали его к реальной действительности.

Его рукопись “Элементы математической химии” была найдена после смерти среди его бумаг. Видимо, Ломоносов, вдохновленный работой Principia И. Ньютона, намеревался написать подобный химический трактат, в котором он хотел изложить всё существующее на тот момент химическое знание в аксиоматической манере.

“Всё, что до этого было в науках: гидравлика, аэрометрия, оптика и других темно, сомнительно и недостоверно, математика же сделала всё ясным, верным и очевидным”. (М. В. Ломоносов)



-80%
Курсы повышения квалификации

Арт-математика - эффективный инструмент эстетического воспитания обучающихся

Продолжительность 16 часов
Документ: Удостоверение о повышении квалификации
2500 руб.
500 руб.
Подробнее
Скачать разработку
Сохранить у себя:
Материал по математике "Ломоносов и математика" (0.18 MB)

Комментарии 0

Чтобы добавить комментарий зарегистрируйтесь или на сайт