Меню
Разработки
Разработки  /  Алгебра  /  Практикумы  /  7 класс  /  Задачи на смеси и сплавы

Задачи на смеси и сплавы

Задачи на смеси и сплавы
12.06.2020

Содержимое разработки

Задача 1. В каких пропорциях нужно смешать а%-й и b%-й растворы кислоты (a b), чтобы получить с%-й раствор?

Возьмем х г а%-го раствора и у г b%-го раствора кислоты. Составим таблицу:

Kонцентрация раствора,
%

Масса раствора,
г

Масса кислоты,
г

a

х

0,01ax

b

у

0,01by

c (смесь)

x + y

0,01c(x + y)

Составим и решим уравнение:

0,01ах + 0,01by = 0,01c(x + y),

(– с)у = (с – а)х,

у = (– с) : (с – а).

Воспользуемся диагональной схемой*:

В этой схеме а и b – концентрации исходных растворов, с – требуемая концентрация кислоты в процентах, а «крест-накрест» – записаны их разности (– с) и (с – а), соответствующие отношению масс растворов а и b.

Задача 2. Сколько по массе 90%-го и 60%-го растворов фосфорной кислоты надо взять, чтобы получить 5,4 кг 80%-го раствора фосфорной кислоты?

Решение

Составим диагональную схему:

Получаем:

х у = 20 : 10 = 2 : 1.

Значит, 90%-го раствора фосфорной кислоты надо взять в 2 раза больше, чем 60%-го, т.е. х = 2y.

Составим уравнение: 2y + y = 5,4.

Отсюда = 1,8 кг.

Ответ. 3,6 кг 90%-го и 1,8 кг 60%-го
растворов фосфорной кислоты.

Задача 3. Сплавили два слитка серебра: 75 г 600-й и 150 г 864-й пробы. Определить пробу сплава.

Решение

Пусть проба сплава равна х.

Составим диагональную схему:

Получаем:

(864 – х) : (х – 600) = 75 : 150 = 1 : 2;

1728 – 2х = х – 600; х = 776.

Ответ. Получили сплав 776-й пробы.

Задача 4. Смешали некоторые количества 72%-го и 58%-го растворов кислоты, в результате получили 62%-й раствор той же кислоты. Если бы каждого раствора было взято на 15 л больше, то получился бы 63,25%-й раствор. Сколько литров каждого раствора было взято первоначально для составления первой смеси?

Решение

Дважды используем диагональную схему:

Получаем:

х : у = 4 : 10 = 2 : 5.

Получаем:

(х + 15) : (y + 15) = 5,25 : 8,75 = 3 : 5.

Составим систему уравнений и решим ее:

Ответ. В первой смеси было 12 л 72%-го раствора
и 30 л 58%-го раствора.

Задача 5. Сколько граммов 9%-го раствора спирта можно получить из 200 г 70%-го раствора спирта?

Решение

9%-й раствор спирта получают из 70%-го, разбавляя его водой. В воде 0% спирта. Применим диагональную схему:

Получаем:

х : у = 63 : 9 = 7 : 1.

Значит, 1 часть 70%-го раствора спирта надо разбавить 7 частями воды. Поэтому 200 г 70%-го раствора спирта надо разбавить 200•7 = 1400 г воды.

Всего получим: 200 + 1400 = 1600 г 9%-го раствора спирта.

Ответ. Из 200 г 70%-го раствора спирта можно
получить 1 кг 600 г 9%-го раствора спирта.



-80%
Курсы повышения квалификации

Развитие пространственных представлений школьников в обучении математике в условиях реализации ФГОС

Продолжительность 36 часов
Документ: Удостоверение о повышении квалификации
3000 руб.
600 руб.
Подробнее
Скачать разработку
Сохранить у себя:
Задачи на смеси и сплавы (47.46 KB)

Комментарии 0

Чтобы добавить комментарий зарегистрируйтесь или на сайт