Пояснительная записка 2020
Нормативные документы, на основании которых разработана программа
Рабочая программа разработана на основе:
Федерального компонента государственного стандарта (начального общего образования, основного общего образования, среднего (полного) общего образования) по учебному предмету, утвержденного приказом Минобразования России от 05.03.2004г. №1089;
Примерной основной образовательной программы;
Программы к завершённой предметной линии или системе учебников, рекомендованных (допущенных) МО РФ к использованию в образовательных учреждениях;
Федерального перечня учебников;
Санитарно-эпидемиологических требований к условиям и организации обучения общеобразовательных учреждениях (утверждены постановлением Главного государственного санитарного врача РФ от 29.12.2010г. №189);
Основной образовательной программы МБОУ СОШ № 27;
Учебного плана образовательного учреждения;
Годового учебного календарного графика на текущий учебный год;
- Программы основного общего образования. Физика. 7-9 классы. Авторы программы: Е.М. Гутник, Н.В. Филонович, А.В. Пёрышкин, рекомендованной Министерством образования и науки РФ. -2016 г.
Цели изучения физики
Изучение физики в 9 классе направлено на достижение следующих целей:
освоение знаний о тепловых, электромагнитных и световых явлениях; величинах, характеризующих эти явления; законах, которым они подчиняются; методах научного познания природы и формирование на этой основе представлений о физической картине мира;
овладение умениями проводить наблюдения природных явлений, описывать и обобщать результаты наблюдений, использовать простые измерительные приборы для изучения физических явлений; представлять результаты наблюдений или измерений с помощью таблиц, графиков и выявлять на этой основе эмпирические зависимости; применять полученные знания для объяснения разнообразных природных явлений и процессов, принципов действия важнейших технических устройств, для решения физических задач;
развитие познавательных интересов, интеллектуальных и творческих способностей, самостоятельности в приобретении новых знаний при решении физических задач и выполнении экспериментальных исследований с использованием информационных технологий;
воспитание убежденности в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважения к творцам науки и техники; отношения к физике как к элементу общечеловеческой культуры;
применение полученных знаний и умений для решения практических задач повседневной жизни, для обеспечения безопасности своей жизни, рационального природопользования и охраны окружающей среды.
Достижение целей обеспечивается решением следующих задач:
знакомство учащихся с методом научного познания и методами исследования объектов и явлений природы;
приобретение учащимися знаний о механических, тепловых, физических величинах, характеризующих эти явления;
формирование у учащихся умений наблюдать природные явления и выполнять опыты, лабораторные работы и экспериментальные исследования с использованием измерительных приборов, широко применяемых в практической жизни;
овладение учащимися такими общенаучными понятиями, как природное явление, эмпирически установленный факт, проблема, гипотеза, теоретический вывод, результат экспериментальной проверки.
Общая характеристика учебного предмета
Школьный курс физики — системообразующий для естественнонаучных предметов, поскольку физические законы, лежащие в основе мироздания, являются основой содержания курсов химии, биологии, географии и астрономии.
Физика вооружает школьников научным методом познания, позволяющим получать объективные знания об окружающем мире.
Описание места учебного предмета в учебном плане
В основной школе физика изучается с 7 по 9 класс. Учебный план составляет 245 учебных часов, в том числе в 7, 8 классах по 70 учебных часов из расчета 2 учебных часов неделю, а в 9 классе 105 часов из расчета 3 часа в неделю. В соответствии с учебным планом курсу физики предшествует курс «Окружающий мир», включающий некоторые знания из области физики, астрономии. В свою очередь, содержание курса физики основной школы, являясь базовым звеном в системе непрерывного естественно-научного образования, служит основой для последующей уровневой и профильной дифференциации.
Федеральный базисный учебный план для общеобразовательных учреждений Российской Федерации отводится 105 часов для обязательного изучения физики в 9 классе из расчета 3 учебных часа в неделю.
Физика как наука о наиболее общих законах природы, выступая в качестве учебного предмета в школе, вносит существенный вклад в систему знаний об окружающем мире. Она раскрывает роль науки в экономическом и культурном развитии общества, способствует формированию современного научного мировоззрения. Гуманитарное значение физики как составной части общего образования состоит в том, что она вооружает школьника научным методом познания, позволяющим получать объективные знания об окружающем мире.
Знание физических законов необходимо для изучения химии, биологии, физической географии, технологии, ОБЖ.
Личностные, мета предметные и предметные результаты освоения учебного предмета.
Личностные результаты:
• сформированность познавательных интересов, интеллектуальных и творческих способностей учащихся;
• убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки и техники, отношение к физике как элементу общечеловеческой культуры;
• самостоятельность в приобретении новых знаний и практических умений;
• готовность к выбору жизненного пути в соответствии с собственными интересами и возможностями;
• мотивация образовательной деятельности школьников на основе личностно ориентированного подхода;
• формирование ценностных отношений друг к другу, учителю, авторам открытий и изобретений, результатам обучения.
Метапредметные результаты:
• овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования, самоконтроля и оценки результатов своей деятельности, умениями предвидеть возможные результаты своих действий;
• понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, овладение универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез, разработки теоретических моделей процессов или явлений;
• формирование умений воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать и перерабатывать полученную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находить в нем ответы на поставленные вопросы и излагать его;
• приобретение опыта самостоятельного поиска, анализа и отбора информации с использованием различных источников и новых информационных технологий для решения познавательных задач;
• развитие монологической и диалогической речи, умения выражать свои мысли и способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение;
• освоение приемов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем;
• формирование умений работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию.
Предметные результаты:
• знания о природе важнейших физических явлений окружающего мира и понимание смысла физических законов, раскрывающих связь изученных явлений;
• умения пользоваться методами научного исследования явлений природы, проводить наблюдения, планировать и выполнять эксперименты, обрабатывать результаты измерений, представлять результаты измерений с помощью таблиц, графиков и формул, обнаруживать зависимости между физическими величинами, объяснять полученные результаты и делать выводы, оценивать границы погрешностей результатов измерений;
• умения применять теоретические знания по физике на практике, решать физические задачи на применение полученных знаний;
• умения и навыки применять полученные знания для объяснения принципов действия важнейших технических устройств, решения практических задач повседневной жизни, обеспечения безопасности своей жизни, рационального природопользования и охраны окружающей среды;
• формирование убеждения в закономерной связи и познаваемости явлений природы, в объективности научного знания, в высокой ценности науки в развитии материальной и духовной культуры людей;
• развитие теоретического мышления на основе формирования умений устанавливать факты, различать причины и следствия, строить модели и выдвигать гипотезы, отыскивать и формулировать доказательства выдвинутых гипотез, выводить из экспериментальных фактов и теоретических моделей физические законы;
• коммуникативные умения докладывать о результатах своего исследования, участвовать в дискуссии, кратко и точно отвечать на вопросы, использовать справочную литературу и другие источники информации.Более детально планируемые результаты обучения представлены в тематическом планировании.
Содержание учебного предмета
Законы взаимодействия и движения тел (37ч)
Материальная точка. Система отсчета. Перемещение. Скорость прямолинейного равномерного движения. Прямолинейное равноускоренное движение: мгновенная скорость, ускорение, перемещение. Графики зависимости кинематических величин от времени при равномерном и равноускоренном движении. Относительность механического движения. Геоцентрическая и гелиоцентрическая системы мира. Инерциальная система отсчета. Законы Ньютона. Свободное падение. Невесомость. Закон всемирного тяготения. [Искусственные спутники Земли.] Импульс. Закон со- хранения импульса. Реактивное движение.
ФРОНТАЛЬНЫЕ ЛАБОРАТОРНЫЕ РАБОТЫ
Исследование равноускоренного движения без начальной скорости.
Измерение ускорения свободного падения.
Предметными результатами обучения по данной теме являются:
понимание и способность описывать и объяснять физические явления: поступательное движение, смена дня и ночи на Земле, свободное падение тел, невесомость, движение по окружности с постоянной по модулю скоростью; знание и способность давать определения/описания физических понятий: относительность движения, геоцентрическая и гелиоцентрическая системы мира; [первая космическая скорость], реактивное движение; физических моделей: материальная точка, система отсчета; физических величин: перемещение, скорость равномерного прямолинейного движения, мгновенная скорость и ускорение при равноускоренном прямолинейном движении, скорость и центростремительное ускорение при равномерном движении тела по окружности, импульс;
понимание смысла основных физических законов: за- коны Ньютона, закон всемирного тяготения, закон сохранения импульса, закон сохранения энергии и умение применять их на практике;
умение приводить примеры технических устройств и живых организмов, в основе перемещения которых лежит принцип реактивного движения; знание и умение объяснять устройство и действие космических ракетносителей;
умение измерять: мгновенную скорость и ускорение при равноускоренном прямолинейном движении, центростремительное ускорение при равномерном движении по окружности;
умение использовать полученные знания в повседневной жизни (быт, экология, охрана окружающей среды).
Механические колебания и волны. Звук (15ч)
Колебательное движение. Колебания груза на пру- жине. Свободные колебания. Колебательная система. Маят- ник. Амплитуда, период, частота колебаний. [Гармониче- ские колебания]. Превращение энергии при колебательном движении. Затухающие колебания. Вынужденные колеба- ния. Резонанс. Распространение колебаний в упругих сре- дах. Поперечные и продольные волны. Длина волны. Связь длины волны со скоростью ее распространения и периодом (частотой). Звуковые волны. Скорость звука. Высота, тембр и громкость звука. Эхо. Звуковой резонанс. [Интерференция звука].
ФРОНТАЛЬНАЯ ЛАБОРАТОРНАЯ РАБОТА
Исследование зависимости периода и частоты свободных колебаний маятника от длины его нити.
Предметными результатами обучения по данной теме являются:
понимание и способность описывать и объяснять физические явления: колебания математического и пружинного маятников, резонанс (в том числе звуковой), механические волны, длина волны, отражение звука, эхо;
знание и способность давать определения физических понятий: свободные колебания, колебательная система, маятник, затухающие колебания, вынужденные колебания, звук и условия его распространения; физических величин: амплитуда, период и частота колебаний, собственная частота колебательной системы, высота, [тембр], громкость звука, скорость звука; физических моделей: [гармонические колебания], математический маятник;
владение экспериментальными методами исследования зависимости периода и частоты колебаний маятника от длины его нити.
Электромагнитное поле (27ч)
Однородное и неоднородное магнитное поле. Направление тока и направление линий его магнитного поля. Правило буравчика. Обнаружение магнитного поля. Правило ле- вой руки. Индукция магнитного поля. Магнитный поток. Опыты Фарадея. Электромагнитная индукция. Направление индукционного тока. Правило Ленца. Явление самоиндукции. Переменный ток. Генератор переменного тока. Преобразования энергии в электрогенераторах. Трансформатор. Передача электрической энергии на расстояние. Электромагнитное поле. Электромагнитные волны. Скорость распространения электромагнитных волн. Влияние электромагнитных излучений на живые организмы. Колебательный контур. Получение электромагнитных колебаний. Принципы радиосвязи и телевидения. [Интерференция света.] Электромагнитная природа света. Преломление света. Пока- затель преломления. Дисперсия света. Цвета тел. [Спектрограф и спектроскоп.] Типы оптических спектров. [Спектральный анализ.] Поглощение и испускание света атомами. Происхождение линейчатых спектров.
ФРОНТАЛЬНЫЕ ЛАБОРАТОРНЫЕ РАБОТЫ
Изучение явления электромагнитной индукции. Наблюдение сплошного и линейчатых спектров испускания.
Предметными результатами обучения по данной теме являются:
понимание и способность описывать и объяснять физические явления/процессы: электромагнитная индукция, самоиндукция, преломление света, дисперсия света, поглощение и испускание света атомами, возникновение линейчатых спектров испускания и поглощения; знание и способность давать определения/описания физических понятий: магнитное поле, линии магнитной индукции, однородное и неоднородное магнитное поле, магнит- ный поток, переменный электрический ток, электромагнитное поле, электромагнитные волны, электромагнитные колебания, радиосвязь, видимый свет; физических величин: магнитная индукция, индуктивность, период, частота и амп- литуда электромагнитных колебаний, показатели преломления света; знание формулировок, понимание смысла и умение применять закон преломления света и правило Ленца, квантовых постулатов Бора; -знание назначения, устройства и принципа действия технических устройств: электромеханический индукционный генератор переменного тока, трансформатор, колебательный контур, детектор, спектроскоп, спектрограф;[понимание сути метода спектрального анализа и его возможностей].
Строение атома и атомного ядра. Использование энергии атомных ядер (17ч)
Радиоактивность как свидетельство сложного строения атомов. Альфа-, бета- и гамма-излучения. Опыты Резерфорда. Ядерная модель атома. Радиоактивные превращения атомных ядер. Сохранение зарядового и массового чисел при ядерных реакциях. Экспериментальные методы исследования частиц. Протонно-нейтронная модель ядра. Физический смысл зарядового и массового чисел. Изотопы. Правила смещения для альфа- и бета-распада при ядерных реакциях. Энергия связи частиц в ядре. Деление ядер урана. Цепная реакция. Ядерная энергетика. Экологические про- блемы работы атомных электростанций. Дозиметрия. Период полураспада. Закон радиоактивного распада. Влияние радиоактивных излучений на живые организмы. Термоядерная реакция. Источники энергии Солнца и звезд.
ФРОНТАЛЬНЫЕ ЛАБОРАТОРНЫЕ РАБОТЫ
Измерение естественного радиационного фона дозиметром. Изучение деления ядра атома урана по фотографии треков.
Оценка периода полураспада находящихся в воздухе продуктов распада газа радона. Изучение треков заряженных частиц по готовым фотографиям.
Предметными результатами обучения по данной теме являются:
-понимание и способность описывать и объяснять физические явления: радиоактивность, ионизирующие излучения;
-знание и способность давать определения/описания физических понятий: радиоактивность, альфа-, бета- и гамма-частицы; физических моделей: модели строения атомов, предложенные Д. Томсоном и Э. Резерфордом; протонно- нейтронная модель атомного ядра, модель процесса деления ядра атома урана; физических величин: поглощенная доза излучения, коэффициент качества, эквивалентная доза, период полураспада;
-умение приводить примеры и объяснять устройство и принцип действия технических устройств и установок: счетчик Гейгера, камера Вильсона, пузырьковая камера, ядерный реактор на медленных нейтронах;
-умение измерять: мощность дозы радиоактивного излучения бытовым дозиметром;
-знание формулировок, понимание смысла и умение применять: закон сохранения массового числа, закон сохранения заряда, закон радиоактивного распада, правило смещения;
-владение экспериментальными методами исследования в процессе изучения зависимости мощности излучения продуктов распада радона от времени;
-понимание сути экспериментальных методов исследования частиц;
умение использовать полученные знания в повседневной жизни (быт, экология, охрана окружающей среды, техника безопасности и др.).
Строение и эволюция Вселенной (5ч)
Состав, строение и происхождение Солнечной системы. Планеты и малые тела Солнечной системы. Строение, излучение и эволюция Солнца и звезд. Строение и эволюция Вселенной.
Предметными результатами обучения по данной теме являются:
21
-представление о составе, строении, происхождении и возрасте Солнечной системы;-умение применять физические законы для объяснения движения планет Солнечной системы;
-знать, что существенными параметрами, отличающими звезды от планет, являются их массы и источники энергии (термоядерные реакции в недрах звезд и радиоактивные в недрах планет);
-сравнивать физические и орбитальные параметры планет земной группы с соответствующими параметрами планет-гигантов и находить в них общее и различное;
-объяснять суть эффекта Х. Доплера; формулировать и объяснять суть закона Э. Хаббла, знать, что этот закон явился экспериментальным подтверждением модели нестационарной Вселенной, открытой А. А. Фридманом.
Повторение (4ч)
Общими предметными результатами обучения по данному курсу являются: - умение пользоваться методами научного исследования явлений природы: проводить наблюдения, планировать и выполнять эксперименты, обрабатывать результаты измерений, представлять результаты измерений с помощью таблиц, графиков и формул, обнаруживать зависимости между физическими величинами, объяснять результаты и делать выводы, оценивать границы погрешностей результатов измерений; - развитие теоретического мышления на основе формирования умений устанавливать факты, различать причины и следствия, использовать физические модели, выдвигать гипотезы, отыскивать и формулировать доказательства выдвинутых гипотез.
Планируемые результаты изучения учебного предмета
Ученик научится:
- распознавать механические явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: равномерное и неравномерное прямолинейное движение, равноускоренное движение;
- понимать смысл понятий: физическое явление, физический закон, взаимодействие,
электрическое поле, магнитное поле, волна, атом, атомное ядро, ионизирующие излучения; смысл физических величин: путь, скорость, ускорение, импульс, электрический заряд, сила электрического тока, электрическое напряжение, электрическое сопротивление, работа и мощность электрического тока. смысл физических законов: Ньютона, всемирного тяготения, сохранения импульса и механической энергии, сохранения энергии в тепловых процессах, сохранения электрического заряда.
- описывать изученные свойства тел и механические явления, используя физические величины: путь, скорость, ускорение, сила, механическая работа, при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами;
- анализировать свойства тел, механические явления и процессы, используя физические законы и принципы: закон сохранения энергии, закон сохранения импульса, закон всемирного тяготения, равнодействующая сила, при этом различать словесную формулировку закона и его математическое выражение;
- решать задачи, используя физические законы (закон сохранения энергии, закон сохранения импульса, закон всемирного тяготения) и формулы, связывающие физические величины (путь, скорость, ускорение, механическая работа, импульс): на основе анализа условия задачи выделять физические величины и формулы, необходимые для её решения, и проводить расчёты.
Ученик получит возможность научиться:
- описывать и объяснять физические явления: равномерное прямолинейное движение, равноускоренное прямолинейное движение, взаимодействие магнитов, действие магнитного поля на проводник с током, тепловое действие тока электромагнитную индукцию.
- использовать физические приборы и измерительные инструменты для измерения физических величин: расстояния, промежутка времени, силы, работы и мощности;
- представлять результаты измерений с помощью таблиц, графиков и выявлять на этой основе эмпирические зависимости: пути от времени и ускорения, периода колебаний маятника от длины нити, периода колебаний груза на пружине от массы груза и от жёсткости пружины, температуры остывающего тела от времени.
- выражать результаты измерений и расчетов в единицах СИ
- приводить примеры практического использования физических знаний о
механических явлениях, тепловых, электромагнитных и квантовых явлениях;
- решать задачи на применение изученных физических законов;
- осуществлять самостоятельный поиск информации естественнонаучного содержания с использованием различных источников (учебных текстов, справочных и научно-популярных изданий, компьютерных баз данных, ресурсов Интернета), ее обработку и представление в разных формах (словесно, с помощью графиков, математических символов, рисунков и структурных схем);
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни:
- обеспечения безопасности в процессе использования транспортных средств, электробытовых приборов, электронной техники;
- контроля над исправностью электропроводки, водопровода, сантехники и газовых приборов в квартире;
Проверка знаний учащихся
Нормы оценки знаний и умений учащихся по физике
При оценке ответов учащихся учитываются следующие знания:
- о физических явлениях:
- признаки явления, по которым оно обнаруживается;
- условия, при которых протекает явление;
связь данного явления с другими;
объяснение явления на основе научной теории;
примеры учета и использования его на практике; о физических опытах:
цель, схема, условия, при которых осуществлялся опыт, ход и результаты опыта;
- о физических понятиях, в том числе и о физических величинах:
явления или свойства, которые характеризуются данным понятием (величиной);
определение понятия (величины);
формулы, связывающие данную величину с другими;
единицы физической величины;
способы измерения величины;
о законах:
формулировка и математическое выражение закона;
опыты, подтверждающие его справедливость;
примеры учета и применения на практике;
о физических теориях:
опытное обоснование теории;
основные понятия, положения, законы, принципы;
основные следствия;
практические применения;
- о приборах,
механизмах, машинах:
назначение;
принцип действия и схема устройства;
применение и правила пользования прибором.
Следует учитывать, что в конкретных случаях не все требования могут быть предъявлены учащимся, например знание границ применимости законов и теорий, так как эти границы не всегда рассматриваются в курсе физики средней школы.
Предусмотрено проведение контрольных и самостоятельных работ, лабораторных работ.
Оценке подлежат умения:
применять понятия, законы и теории для объяснения явлений природы и техники;
самостоятельно работать с учебником;
решать задачи на основе известных законов и формул;
пользоваться справочными таблицами физических величин.
Оценка ответов учащихся
Оценка ответов учащихся
1. Оценка устных ответов учащихся.
Оценка 5 ставится в том случае, если учащийся показывает верное понимание физической сущности рассматриваемых явлений и закономерностей, законов и теорий, дает точное определение и истолкование основных понятий и законов, теорий, а также правильное определение физических величин, их единиц и способов измерения; правильно выполняет чертежи, схемы и графики; строит ответ по собственному плану, сопровождает рассказ новыми примерами, умеет применять знания в новой ситуации при выполнении практических заданий; может устанавливать связь между изучаемым и ранее изученным материалом по курсу физики, а также с материалом усвоенным при изучении других предметов.
Оценка 4 ставится в том случае, если ответ ученика удовлетворяет основным требованиям к ответу на оценку 5, но без использования собственного плана, новых примеров, без применения знаний в новой ситуации, без использования связей с ранее изученным материалом, усвоенным при изучении других предметов; если учащийся допустил одну ошибку или не более двух недочетов и может исправить их самостоятельно или с небольшой помощью учителя.
Оценка 3 ставится в том случае, если учащийся правильно понимает физическую сущность рассматриваемых явлений и закономерностей, но в ответе имеются отдельные пробелы в усвоении вопросов курса физики, не препятствующие дальнейшему усвоению программного материала; испытывает затруднения в применении знаний при объяснении конкретных физических явлений на основе теории и законов, или в подтверждении конкретных примеров практического применения теории; умеет применять полученные знания при решении простых задач с использованием готовых формул, но затрудняется при решении задач, требующих преобразования некоторых формул; отвечает неполно на вопросы учителя (упуская и основное), или воспроизводит содержание текста учебника, но недостаточно понимает отдельные положения, имеющие важное значение в этом тексте; допустил не более одной грубой и одной негрубой ошибки, не более двух-трех негрубых недочетов.
Оценка 2 ставится в том случае, если учащийся не овладел основными знаниями в соответствии с требованиями и допустил больше ошибок и недочетов, чем необходимо для оценки 3.
Оценка 1 ставится в том случае, если ученик не может ответить ни на один из поставленных вопросов.
2. Оценка письменных самостоятельных и контрольных работ.
Оценка 5 ставится за работу, выполненную полностью без ошибок и недочетов или имеющую не более одного недочета. Оценка 4 ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета или не более трех недочетов. Оценка 3 ставится за работу, выполненную не менее половины всей работы или при допущении не более двух грубых ошибок, или не более одной грубой ошибки и одного недочета, или не более двух-трех негрубых ошибок, или одной негрубой ошибки и более трех недочетов, или при отсутствии ошибок, но при наличии 4-5 недочетов. Оценка 2 ставится за работу, в которой число ошибок и недочетов превосходит норму, при которой может быть выставлена оценка «3», или если правильно выполнено менее половины работы. Оценка 1 ставится за работу, если ученик не приступал к выполнению её или правильно выполнил не более 10 % всех заданий, т.е. записал условие одной задачи в общепринятых символических обозначения.
3. Оценка лабораторных и практических работ.
Оценка 5 ставится в том случае, если учащийся выполнил работу в полном объеме с соблюдением необходимой последовательности проведения опытов и измерений; самостоятельно и рационально монтирует необходимое оборудование; все опыты проводит в условиях и режимах, обеспечивающих получение правильных результатов и выводов; соблюдает требования правил безопасного труда; в отчете правильно и аккуратно выполняет все записи, таблицы, рисунки, чертежи, графики, вычисления, правильно выполняет анализ погрешностей.
Оценка 4 ставится в том случае, если учащийся выполнил работу в соответствии с требованиями к оценке 5, но допустил два-три недочета, не более одной негрубой ошибки и одного недочета.
Оценка 3 ставится в том случае, если учащийся выполнил работу не полностью, но объем выполненной части таков, что позволяет получить правильные результаты и выводы, если в ходе проведения опыта и измерений были допущены ошибки.
Оценка 2 ставится в том случае, если учащийся выполнил работу не полностью и объем выполненной работы не позволяет сделать правильные выводы, вычисления; наблюдения проводились неправильно.
Оценка 1 ставится в том случае, если учащийся совсем не выполнил работу.
Во всех случаях оценка снижается, если учащийся не соблюдал требований правил безопасного труда.
4. Оценка тестовых работ.
Оценка 5 ставится в том случае, если учащийся выполнил работу в полном объеме на 100%.
Оценка 4 ставится в том случае, если учащийся выполнил работу в объеме 80-99%.
Оценка 3 ставится в том случае, если учащийся выполнил работу в объеме 60-79%.
Оценка 2 ставится в том случае, если учащийся выполнил работу в объеме 11-59%.
Оценка 1 ставится в том случае, если учащийся выполнил работу в объеме 10%.
5. Перечень ошибок.
Грубые ошибки. 1. Незнание определений основных понятий, законов, правил, положений теории, формул, общепринятых символов, обозначения физических величин, единицу измерения.
2. Неумение выделять в ответе главное.
3. Неумение применять знания для решения задач и объяснения физических явлений; неправильно сформулированные вопросы, задания или неверные объяснения хода их решения, незнание приемов решения задач, аналогичных ранее решенным в классе; ошибки, показывающие неправильное понимание условия задачи или неправильное истолкование решения.
4. Неумение читать и строить графики и принципиальные схемы
5. Неумение подготовить к работе установку или лабораторное оборудование, провести опыт, необходимые расчеты или использовать полученные данные для выводов.
6. Небрежное отношение к лабораторному оборудованию и измерительным приборам.
7. Неумение определить показания измерительного прибора.
8. Нарушение требований правил безопасного труда при выполнении эксперимента.
Негрубые ошибки.
1.Неточности формулировок, определений, законов, теорий, вызванных неполнотой ответа основных признаков определяемого понятия. Ошибки, вызванные несоблюдением условий проведения опыта или измерений.
2.Ошибки в условных обозначениях на принципиальных схемах, неточности чертежей, графиков, схем.
3.Пропуск или неточное написание наименований единиц физических величин.
4.Нерациональный выбор хода решения.
Недочеты.
1.Нерациональные записи при вычислениях, нерациональные приемы вычислений, преобразований и решения задач.
2.Арифметические ошибки в вычислениях, если эти ошибки грубо не искажают реальность полученного результата.
3.Отдельные погрешности в формулировке вопроса или ответа.
4.Небрежное выполнение записей, чертежей, схем, графиков.
5.Орфографические и пунктуационные ошибки.
Тематическое планирование
№ п/п | Наименование раздела
| всего часов | Из них: лабораторные | Контрольные/зачет | примечание |
1 | Законы движения и взаимодействия тел.
| 37 | 2 | 4 |
|
2 | Механические колебания и волны. Звук. | 15 | 1 | 1 |
|
3 | Электромагнитное поле
| 27 | 2 | 1 |
|
4 | Строение атома и атомного ядра. Использование энергии атомных ядер.
| 17 | 3 | 1 |
|
5 | Строение и эволюция Вселенной. | 5 |
|
|
|
6
| Повторение
| 4 |
|
|
|
| Итого | 70 | 8 | 7 |
|
Формы контроля:
Тестовые задания
Физический диктант
Контрольная работа (тематическая, итоговая)
Фронтальная работа
Лабораторная работа
Учи.ру
Педагогические технологии, средства обучения:
- игровые технологии
- элементы проблемного обучения
- технологии уровневой дифференциации
- здоровьесберегающие технологии
- ИКТ
Необходимые средства обучения:
Слово учителя,
учебники, учебные пособия, хрестоматии, справочники и т.п.;
раздаточные и дидактические материалы;
технические средства обучения (устройства и пособия к ним);
физические приборы и т.д.
Средства обучения размещаются в школьном физическом кабинете.
Учебно-методическое и материально-техническое обеспечение.
Для реализации данной программы используется учебно-методический комплект, который соответствует Федеральному перечню учебников, рекомендованных к использованию в общеобразовательном учреждении.
1. А.В Перышкин, Е.М. Гутник «Физика 9 , учебник для общеобразовательных учреждений Москва: Просвещение, 2018г.
2. Л.В. Лукашик, Е.В. Иванова: «Сборник задач по физике 7 – 9 классы» - М., Просвещение, 2018г. 3. А.Е. Марон, Е.А. Марон, Физика 9 класс Дидактические материалы М. Дрофа, 2016 4. Тетрадь для лабораторных работ по физике, 9 класс: к учебнику А.В. Перышкина, «Физика 9 класс» Р.Д. Минькова, В.В. Иванова, М.: Издательство «Экзамен», 2019г
Для учащихся: 1. А.В Перышкин, А.Е. Гутник «Физика 9» , учебник для общеобразовательных учреждений Москва: Просвещение, 2018г. 2. Л.В. Лукашик, Е.В. Иванова: «Сборник задач по физике 7 – 9 классы» - М., Просвещение, 2018г. 3. А.Е. Марон, Е.А. Марон, Физика 9 класс Дидактические материалы М. Дрофа, 2016г 4. Тетрадь для лабораторных работ по физике, 9 класс: к учебнику А.В. Перышкина, « Физика 9 класс» Р.Д. Минькова, В.В. Иванова, М.: Издательство «Экзамен», 2019г
Кроме этого для работы используются методические пособия:
1.Методика решения задач по физике в средней школе. Авторы: С.Е. Каменецкий, В.П. Орехов. М., “Просвещение” 2016 г 2. Оценка качества подготовки выпускников основной школы по физике. Составитель: В.А. Коровин. М., “Дрофа” 2016 г.
3. Сборник тестовых заданий для тематического и итогового контроля. Физика основная школа (7-9 класс). 4.. Нестандартные уроки Физики 7-11 класс. Волгоград, «Учитель-АСТ» Составитель: Е.А. Демченко. 2016г 6.Сборник задач по физике:7-9 кл.: к учебникам А.В. Перышкина и др. «Физика 7 класс», «Физика 8 класс», «Физика 9 класс» - М.: Дрофа 2016 7. Интерактивное пособие «Наглядная физика 9»
Интернет-ресурсы
www.drofa.ru www.sch2000.ru www.ege.moipkro.ru www.fipi.ru | www.1september.ru http://schools.techno.ru/tech/index.html http://school-collection.edu.ru/ | http://archive.1september.ru/fiz http://www.ivanovo.ac.ru/phys http://www.edu.delfa.net/
|
Материально-техническое обеспечение дисциплины
Комплект демонстрационного и лабораторного оборудования по тепловым явлениям, электрическим и световым явлениям ) в соответствии с перечнем учебного оборудования по физике для основной школы.
Номенклатура учебного оборудования по физике определяется стандартами физического образования, минимумом содержания учебного материала, базисной программой общего образования.
Для постановки демонстраций достаточно одного экземпляра оборудования, для фронтальных лабораторных работ не менее одного комплекта оборудования на двоих учащихся
Главной целью образования является развитие ребенка как компетентной личности путем включения его в различные виды ценностной человеческой деятельности: учеба, познания, коммуникация, профессионально-трудовой выбор, личностное саморазвитие, ценностные ориентации, поиск смыслов жизнедеятельности. С этих позиций обучение рассматривается как процесс овладения не только определенной суммой знаний и системой соответствующих умений и навыков, но и как процесс овладения компетенциями
- Это определило цель обучения физике: освоение знаний о механических, тепловых, электромагнитных и квантовых явлениях, величинах, характеризующих эти явления, законах, которым они подчиняются, о методах научного познания природы и формирование на этой основе представлений о физической картине мира; и выявлять на этой основе эмпирические зависимости; применять овладение умениями проводить наблюдения природных явлений, описывать и обобщать результаты наблюдений, использовать простые измерительные приборы для изучения физических явлений; представлять результаты наблюдений или измерений с помощью таблиц, графиков полученные знания для объяснения разнообразных природных явлений и процессов, принципов действия.
-