Полезно помнить, что в двоичной системе:
четные числа оканчиваются на 0, нечетные – на 1;
числа, которые делятся на 4, оканчиваются на 00, и т.д.; числа, которые делятся на 2k, оканчиваются на k нулей
если число N принадлежит интервалу 2k-1 £ N < 2k, в его двоичной записи будет всего k цифр, например, для числа 125:
26 = 64 £ 125 < 128 = 27, 125 = 11111012 (7 цифр)
числа вида 2k записываются в двоичной системе как единица и k нулей, например:
16 = 24 = 100002
числа вида 2k-1 записываются в двоичной системе k единиц, например:
15 = 24-1 = 11112
если известна двоичная запись числа N, то двоичную запись числа 2·N можно легко получить, приписав в конец ноль, например:
15 = 11112, 30 = 111102, 60 = 1111002, 120 = 11110002
Сколько единиц в двоичной записи числа 1025?
1) 1 2) 2 3) 10 4) 11
Решение (вариант 1, прямой перевод):
1) переводим число 1025 в двоичную систему: 1025 = 100000000012
2) считаем единицы, их две
Ответ: 2
Возможные проблемы:
легко запутаться при переводе больших чисел.
Решение (вариант 2, разложение на сумму степеней двойки):
1) тут очень полезно знать наизусть таблицу степеней двойки, где 1024 = 210 и 1 = 20
2) таким образом, 1025= 1024 + 1 = 210 + 20
3) вспоминая, как переводится число из двоичной системы в десятичную (значение каждой цифры умножается на 2 в степени, равной её разряду), понимаем, что в двоичной записи числа ровно столько единиц, сколько в приведенной сумме различных степеней двойки, то есть, 2
4) Ответ: 2.