Меню
Разработки
Разработки  /  Математика  /  Презентации  /  6 класс  /  "Наибольший общий делитель"

"Наибольший общий делитель"

08.11.2019

Содержимое разработки

23.09.19 Классная работа

23.09.19

Классная работа

Наибольший общий делитель

Наибольший общий делитель

 Найдем все делители чисел 54 и 36 .  делится на  делится на

Найдем все делители чисел 54 и 36 .

делится на

делится на

Общими делителями являются числа:  1, 2, 3, 6, 9, 18.   Значит из купленных цветов можно составить 1, 2, 3, 6, 9 или 18 букетов.

Общими делителями являются числа:

1, 2, 3, 6, 9, 18.

Значит из купленных цветов можно составить 1, 2, 3, 6, 9 или 18 букетов.

Наибольшее количество  букетов – 18 .

Наибольшее количество

букетов – 18 .

Разложим числа на простые множители: 54 2 36 2 54 = 2 * 3 * 3 *3 27 3 18 2  9 3 9 3 36 = 2 * 2 * 3 * 3  3 3 3 3  1 1

Разложим числа на простые множители:

54 2 36 2 54 = 2 * 3 * 3 *3

27 3 18 2

9 3 9 3 36 = 2 * 2 * 3 * 3

3 3 3 3

1 1

Вычеркнем из разложения первого числа множители, которых нет в разложении второго. 54 = 2 * 3 * 3 * 3 36 = 2 * 2 * 3 * 3 Оставшиеся множители перемножим. Итак,  НОД(54, 36) = 2 * 3 * 3 = 18.

Вычеркнем из разложения первого числа множители, которых нет в разложении второго.

54 = 2 * 3 * 3 * 3

36 = 2 * 2 * 3 * 3

Оставшиеся множители перемножим.

Итак,

НОД(54, 36) = 2 * 3 * 3 = 18.

Найдем наибольший общий делитель чисел 24 и 35.  24 2 35 5  12 2 7 7  6 2 1  3 3  1  24 = 2 * 2 * 2 * 3  35 = 5 * 7  НОД(24; 35) = 1

Найдем наибольший общий делитель чисел 24 и 35.

24 2 35 5

12 2 7 7

6 2 1

3 3

1

24 = 2 * 2 * 2 * 3

35 = 5 * 7

НОД(24; 35) = 1

Определение.  Числа, наибольший общий делитель которых равен 1, называются взаимно простыми

Определение.

Числа, наибольший общий делитель которых равен 1, называются взаимно простыми

Закрепление. № 146 Домашнее задание: п. 6, № 169, 170(а), 172, повт. № 162

Закрепление.

№ 146

Домашнее задание:

п. 6, № 169, 170(а), 172, повт. № 162

Спасибо за урок!

Спасибо за урок!

-80%
Курсы повышения квалификации

Организация и сопровождение олимпиадной деятельности учащихся

Продолжительность 72 часа
Документ: Удостоверение о повышении квалификации
4000 руб.
800 руб.
Подробнее
Скачать разработку
Сохранить у себя:
"Наибольший общий делитель" (205 KB)

Комментарии 0

Чтобы добавить комментарий зарегистрируйтесь или на сайт