Меню
Разработки
Разработки  /  Алгебра  /  Факультативы  /  7 класс  /  "Метод Крамера"

"Метод Крамера"

Работая на новой школьной цифровой платформе во время дистанционного обучения, столкнулись с тем, что в модуле "Системы линейных уравнений" в уровне 4.0 надо было решить системы, используя этот метод. В программе 7 класса этого материала нет. В этой разработке собран материал с примерами решения для изучения учениками, т.к. уровень 4.0 рассчитан на мотивированных учеников, детей-исследователей, но для 7 класса это сложный материал и без помощи учителя им не разобраться
28.05.2020

Содержимое разработки

Формулы Крамера для модуля на ШЦП 4.0

Посмотреть урок по ссылкеhttps://youtu.be/f0GvqaF2ht8

Метод Крамера основан на использовании определителей в решении систем линейных уравнений. Это значительно ускоряет процесс решения.

Метод Крамера может быть использован в решении системы стольких линейных уравнений, сколько в каждом уравнении неизвестных. Если определитель системы не равен нулю, то метод Крамера может быть использован в решении, если же равен нулю, то не может. Кроме того, метод Крамера может быть использован в решении систем линейных уравнений, имеющих единственное решение.

Определение. Определитель, составленный из коэффициентов при неизвестных, называется определителем системы и обозначается  (дельта).

Определители 

получаются путём замены коэффициентов при соответствующих неизвестных свободными членами:

;

.

Формулы Крамера для нахождения неизвестных:

.

Найти значения   и  возможно только при условии, если

.

Этот вывод следует из следующей теоремы.

Теорема Крамера Если определитель системы отличен от нуля, то система линейных уравнений имеет одно единственное решение, причём неизвестное равно отношению определителей. В знаменателе – определитель системы, а в числителе – определитель, полученный из определителя системы путём замены коэффициентов при этом неизвестном свободными членами. Эта теорема имеет место для системы линейных уравнений любого порядка.


Ответ : (5;2)

Пример 1. Решить систему линейных уравнений:

.                         (2)

Согласно теореме Крамера имеем:

Итак, решение системы (2):

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.


Три случая при решении систем линейных уравнений

Как явствует из теоремы Крамера, при решении системы линейных уравнений могут встретиться три случая:

Первый случай: система линейных уравнений имеет единственное решение

(система совместна и определённа)

Условия:

Второй случай: система линейных уравнений имеет бесчисленное множество решений

(система совместна и неопределённа)

Условия:

,

**  ,

т.е. коэффициенты при неизвестных и свободные члены пропорциональны.

Третий случай: система линейных уравнений решений не имеет

(система несовместна)

Условия:

**  .

Итак, система m линейных уравнений с переменными называется несовместной, если у неё нет ни одного решения, и совместной, если она имеет хотя бы одно решение. Совместная система уравнений, имеющая только одно решение, называется определённой, а более одного – неопределённой.

Примеры решения систем линейных уравнений методом Крамера

Пусть дана система

.

На основании теоремы Крамера


………….
,

где
-

определитель системы. Остальные определители получим, заменяя столбец с коэффициентами соответствующей переменной (неизвестного) свободными членами:

Пример 2.  Решить систему линейных уравнений методом Крамера:

.

Решение. Находим определитель системы:

Следовательно, система является определённой. Для нахождения её решения вычисляем определители

По формулам Крамера находим:
Итак, (1; 0; -1) – единственное решение системы.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют какие-либо переменные, то в определителе соответствующие им элементы равны нулю! Таков следующий пример.

Пример 3.  Решить систему линейных уравнений методом Крамера:

.

Решение. Находим определитель системы:

Посмотрите внимательно на систему уравнений и на определитель системы и повторите ответ на вопрос, в каких случаях один или несколько элементов определителя равны нулю. Итак, определитель не равен нулю, следовательно, система является определённой. Для нахождения её решения вычисляем определители при неизвестных

По формулам Крамера находим:

Итак, решение системы - (2; -1; 1).

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Применить метод Крамера самостоятельно, а затем посмотреть решения

Пример 4. Решить систему линейных уравнений:

.

Правильное решение и ответ.

Пример 5. Решить систему линейных уравнений методом Крамера:

. Решение. Находим определитель системы:

Следовательно, система является определённой. Для нахождения её решения вычисляем определители

По формулам Крамера находим:



-70%
Курсы повышения квалификации

Развитие пространственных представлений школьников в обучении математике в условиях реализации ФГОС

Продолжительность 36 часов
Документ: Удостоверение о повышении квалификации
3000 руб.
900 руб.
Подробнее
Скачать разработку
Сохранить у себя:
"Метод Крамера" (373.44 KB)