Меню
Разработки
Разработки  /  Математика  /  Уроки  /  7 класс  /  Конспект и презентация по математике "Система линейных алгебраических уравнений"

Конспект и презентация по математике "Система линейных алгебраических уравнений"

Цель урока: формирование у учащихся умения решать системы линейных уравнений с двумя неизвестными способом подстановки.
16.04.2015

Описание разработки

Краткое описание материала статьи.

Сначала дадим все необходимые определения, понятия и введем обозначения.

Далее рассмотрим методы решения систем линейных алгебраических уравнений, в которых число уравнений равно числу неизвестных переменных и которые имеют единственное решение. Во-первых, остановимся на методе Крамера, во-вторых, покажем матричный метод решения таких систем уравнений, в-третьих, разберем метод Гаусса (метод последовательного исключения неизвестных переменных). Для закрепления теории обязательно решим несколько СЛАУ различными способами.

После этого перейдем к решению систем линейных алгебраических уравнений общего вида, в которых число уравнений не совпадает с числом неизвестных переменных или основная матрица системы является вырожденной. Сформулируем теорему Кронекера - Капелли, которая позволяет установить совместность СЛАУ. Разберем решение систем (в случае их совместности) с помощью понятия базисного минора матрицы. Также рассмотрим метод Гаусса и подробно опишем решения примеров.

Обязательно остановимся на структуре общего решения однородных и неоднородных систем линейных алгебраических уравнений. Дадим понятие фундаментальной системы решений и покажем, как записывается общее решение СЛАУ с помощью векторов фундаментальной системы решений. Для лучшего понимания разберем несколько примеров.

В заключении рассмотрим системы уравнений, сводящиеся к линейным, а также различные задачи, при решении которых возникают СЛАУ.

презентация по математике Система линейных алгебраических уравнений

Цель урока: формирование у учащихся умения решать системы линейных уравнений с двумя неизвестными способом подстановки.

Этап №1

Слайд №1.

Приготовились к уроку, встали у своих мест.

-Здравствуйте, ребята. Сегодня у нас на уроке присутствуют гости, поздоровайтесь, пожалуйста, садитесь.

Этап№2

На прошлом уроке мы с вами познакомились с новой математической моделью.

Эта математическая модель представляет собой систему двух линейных уравнений с двумя переменными. Перед нами стояла задача найти такие пары значений (х; у) , которые одновременно удовлетворяют и первому, и второму уравнению.

-Кто может мне сказать:

 Что называется решением системы двух линейных уравнений с двумя переменными?

Слайд№2. (открыть после ответа уч-ся) .

-Хорошо.

-А что значит решить систему двух линейных уравнений с двумя переменными?

Слайд №3. (открыть после ответа уч-ся) .

-Ребята! Скажите мне, пожалуйста, а как назывался метод решения системы, которым мы пользовались на прошлых уроках и в домашнем задании? (Ответ: графический метод) .

Проверим домашнее задание.

-Пока мы будем проверять домашнее задание, у доски нам решит систему графическим методом…(вызвать ученика к доске, задание на карточке) .

. Открыли тетради, взяли зеленую пасту, проверяем:

Слайды №4, №5, №6.

-У кого не было ошибок, может поставить себе «5», у кого были помарки, исправления, неточности – зеленой пастой пишут: Домашнее задание проверено.

-Дома, я также просила поработать вас с текстом параграфа №11, и найти ответ на вопрос: Почему для нас графический способ решения системы двух линейных уравнений имеет большое значение?». Кто нашел ответ на этот вопрос? (стр. 63 учебника) .

Слайд №7. (строки «выпускать» по мере ответа уч-ся) .

-ученик закончил решение системы. Сейчас он прокомментирует нам ее решение.

-Спасибо, садись.

Этап№3

-А сейчас, внимание на экран, я хочу показать вам решение графическим методом еще одной системы:

Слайд№8.

- На чертеже: построен синим цветом график первого линейного уравнения и зеленым цветом график второго уравнения. Как видите, графики пересекаются.

 Координаты точки пересечения графиков и будут являться решением данной системы. Координаты данной точки являются решением и первого и второго линейных уравнений, т. к. точка принадлежит и первому и второму графикам функций. Однако, чему конкретно равны абсцисса и ордината точки, определить очень сложно. Точка «висит» внутри определенной клеточки.

Из этого примера видно, что графический метод решения выручает нас не всегда. Значит, нам нужно располагать надежным алгебраическим методом, который нас не подведет в случае с дробными значениями координат точки.

 Этим мы и займемся сегодня на уроке.

Этап№4

-В тетрадях запишите, пожалуйста, число 19. 11

. Классная работа.

 Тема урока: «Метод подстановки».

Слайд№9.

Для удачного использования этого метода, нам необходимо повторить, как можно из линейного уравнения выразить одну переменную через другую. Мы это уже делали с вами на прошлых уроках. И так:

 №1. Выразить переменную У через Х в следующих уравнениях: (К доске пойдет…)

(Вызвать к доске ученика, задание на доске, следить за устной речью ученика, ученик комментирует свое решение)

5х-2у=0, 3х+2у-16=0

Ответ: у=2, 5х у=8-1, 5х.

Весь материал – смотрите архив.

-75%
Курсы повышения квалификации

Арт-математика – эффективный инструмент эстетического воспитания обучающихся

Продолжительность 16 часов
Документ: Удостоверение о повышении квалификации
2500 руб.
630 руб.
Подробнее
Скачать разработку
Сохранить у себя:
Конспект и презентация по математике "Система линейных алгебраических уравнений" (0.3 MB)