Урок по теме: «Правильные многогранники».
Тип урока: изучение нового материала.
Продолжительность урока: 2 урока по 45 минут.
Цель урока: дать понятия правильного многогранника, полуправильных и звездчатых многогранников, рассмотреть свойства многогранников, познакомить с историей возникновения и развития теории многогранников.
Задачи урока:
Формирование пространственных представлений, математической культуры, культуры общения.
Развитие практических навыков учащихся по изготовлению правильных, полуправильных, звездчатых многогранников.
Развитие умения наблюдать, умения рассуждать по аналогии, интереса к предмету через использование информационных технологий и осуществление межпредметных связей.
Воспитание общетрудовых умений, умения работать в группе.
Оборудование: компьютер, проектор, презентация (приложение 1), карточки (приложение 2), модели правильных многогранников.
Подготовительная работа: учащиеся готовят рефераты и сообщения на 5-6 минут по предложенным темам под руководством учителей математики, физики, химии, биологии.
Ход урока.
1.Орг. момент.
2. Целеполагание
Учитель: Есть в школьной геометрии особые темы, которые ждешь с нетерпением, предвкушая встречу с невероятно красивым материалом. К таким темам можно отнести тему "Правильные многогранники". Здесь не только открывается удивительный мир геометрических тел, обладающих неповторимыми свойствами, но и интересные научные гипотезы. Ни одни геометрические тела не обладают таким совершенством и красотой, как правильные многогранники. Сегодня на уроке мы узнаем и увидим много интересного, нам предстоит ответить на такие вопросы, как, например: Какие многогранники называются правильными? Сколько их существует? Что такое Эйлерова характеристика? Какие тела носят название тел Кеплера- Пуансо? И многие - многие другие… И, наконец: где, зачем и для чего нам нужны многогранники? Может быть, в жизни можно обойтись и без них? Данный материал пригодится нам при изучении темы “Объемы многогранников» и при решении задач на комбинацию геометрических тел.
3. Актуализация знаний учащихся. (2 минуты). Слайд 1-2
Сегодня мы проводим урок по теме «Правильные многогранники». Нам предстоит повторить и обобщить ранее изученный материал, закрепить его при решении задач и узнать что-то новое, ещё не сказанное по данной теме.
Начнём наш урок с традиционного повторения.
Фронтальный опрос: ответить на вопросы преподавателя по рисункам, спроектированным на экран.
Слайд № 3.
Что называется многогранным углом? Чему равна сумма всех плоских углов многогранного угла?
Слайд № 4.
Какие многоугольники называются правильными? Приведите примеры. На доске записать формулы площади правильного треугольника, квадрата, пятиугольника и n-угольника через их стороны.
Слайд № 5.
По какой формуле находят сумму внутренних углов многоугольника? Как найти величину угла правильного многоугольника?
Чему равен внутренний угол правильного треугольника, пятиугольника.
Слайд № 6.
Какой многогранник называется выпуклым?
Дать характеристику многогранника.
Дайте все возможные названия этого многогранника.
Слайд №7.
Дать характеристику многогранника.
Назовите грани, вершины и рёбра данного многогранника.
Слайд №8.
Дать характеристику многогранника.
Можно ли в качестве высоты этой призмы принять боковое ребро?
Будет ли эта призма правильной, если в основании лежит равносторонний треугольник?
Слайд № 9.
Дайте характеристику многогранника.
При каких условиях эта пирамида будет правильной?
Как в этом случае можно назвать высоту боковой грани?
4. Изучение нового материала.
Объяснение нового материала учителем. (5 минут).
Преподаватель: Мы с вами изучили разные виды многогранников: тетраэдр, параллелепипед, пирамиды, призмы. Но ни одно геометрическое тело не обладает такой красотой, как правильные многогранники, с которыми мы познакомимся на сегодняшнем уроке (Показывая модели и называя их).
Преподаватель: Посмотрите внимательно на эти фигуры, и назовите: в чём различие этих тел, а в чём сходство? (Студенты отвечают: различие в том, что они имеют разную форму, разный объём, грани разные многоугольники; сходство в том, что это выпуклые многогранники, гранями являются правильные многогранники, из каждой вершины выходит одинаковое число рёбер, двугранные углы равны.)
Слайд№10.
И так дадим определение: Многогранник называется правильным, если:
он выпуклый
все его грани являются равными правильными многоугольниками
в каждой его вершине сходится одинаковое число граней
все его двугранные углы равны.
ПРАВИЛЬНЫЙ МНОГОГРАННИК - выпуклый многогранник, если все его – равные правильные многоугольники и в каждой его вершине сходится одно и то же число рёбер.
Слайд№11-17.
ТЕТРАЭДР – правильный многогранник, поверхность которого состоит из четырех правильных треугольников.
ГЕКСАЭДР (КУБ) – правильный многогранник, поверхность которого состоит из шести правильных четырехугольников (квадратов
ОКТАЭДР – правильный многогранник, поверхность которого состоит из восьми правильных треугольников.
ДОДЕКАЭДР – правильный многогранник, поверхность которого состоит из двенадцати правильных пятиугольников.
ИКОСАЭДР – правильный многогранник, поверхность которого состоит из двадцати правильных треугольников. Названия этих многогранников пришли из Древней Греции, и в них указывается число граней:
«эдра» - грань
«тетра» - 4
«гекса» - 6
«окта» - 8
«икоса» - 20
«додека» - 12
Историческая справка. (Доклад подготовил студент). Слайд 17-22.
С древнейших времен наши представления о красоте связаны с симметрией. Наверное, этим объясняется интерес человека к многогранникам - удивительным символам симметрии, привлекавшим внимание выдающихся мыслителей.
История правильных многогранников уходит в глубокую древность. Изучением правильных многогранников занимались Пифагор и его ученики. Их поражала красота, совершенство, гармония этих фигур. Пифагорейцы считали правильные многогранники божественными фигурами и использовали в своих философских сочинениях.
Одно из древнейших упоминаний о правильных многогранниках находится в трактате Платона (427-347 до н. э.) "Тимаус". Поэтому правильные многогранники также называются платоновыми телами. Каждый из правильных многогранников, а всего их пять, Платон ассоциировал с четырьмя "земными" элементами: земля (куб), вода (икосаэдр), огонь (тетраэдр), воздух (октаэдр), а также с "неземным" элементом - небом (додекаэдр). Знаменитый математик и астроном Кеплер построил модель Солнечной системы как ряд последовательно вписанных и описанных правильных многогранников и сфер. Но эта гипотеза не подтвердилась. Мы знаем модель современной Солнечной системы.
Идеи Платона и Кеплера о связи правильных многогранников с гармоничным устройством мира и в наше время нашли своё продолжение в интересной научной гипотезе, которую в начале 80-х гг. высказали московские инженеры В. Макаров и В. Морозов. Они считают, что ядро Земли имеет форму и свойства растущего кристалла, оказывающего воздействие на развитие всех природных процессов, идущих на планете. Лучи этого кристалла, а точнее, его силовое поле, обуславливают икосаэдро- додекаэдровую структуру Земли. Она проявляется в том, что в земной коре как бы проступают проекции вписанных в земной шар правильных многогранников: икосаэдра и додекаэдра.
Учитель: А сейчас от научных гипотез перейдём к научным фактам.
5. Практическая работа (15 минут).
Работа в группах. Деление на группы производится заранее, учитывая уровень подготовки детей, так же их желание. Задания дифференцированные. Более подготовленные учащиеся входят в 1 и 3 группу,
1 группа - доказать, почему именно 5 существует правильных многогранников,
2 группа - заполнить таблицы и сделать вывод.(модели).
группа - вывести формулы полной поверхности правильных многогранников.
6.Отчет групп о работе (15 минут). Слайд 23-26.
Один представитель группы отчитывается по результатам у доски (3-4 минуты для каждой группе).
Учащиеся делают соответствующие записи в тетради.
- формулы площадей;
- теорему Эйлера.
(Слайд №27). Задача . Определите количество граней, вершин и рёбер многогранника, изображённого на рисунке. Проверьте выполнимость формулы Эйлера для данного многогранника.
Решение : Г=12, В=10, Р=20, Г+В-Р=2
7. Дополнительные сведения.
Учитель: Кроме пяти правильных многогранников существуют полуправильные многогранники, тела Архимеда.
Доклад ученика по теме: «Архимедовы тела» (5 минут). Слайд28-31.
Архимедова тела обладают свойством: любые две вершины можно совместить так, что все грани многогранника попарно совпадут друг с другом.
Кроме полуправильных многогранников, из правильных многогранников – Платоновых тел можно получить так называемые правильные звездчатые многогранники. Их всего четыре. Первые два были открыты И. Кеплером (1571 – 1630 гг.), а два других были построены почти двести лет спустя французским математиком и механиком Луи Пуансо (1777 – 1859 гг.). Именно поэтому правильные звездчатые многогранники получили название тел Кеплера – Пуансо. В работе «О многоугольниках и многогранниках» (1810 г.) Луи Пуансо перечислил и описал все правильные звездчатые многогранники, поставил, но не решил вопрос о существовании правильных многогранников, число граней которых отлично от 4, 6, 8, 12, 20. Отчет на этот вопрос был дан год спустя, в 1811 году, французским математиком Огюстом Луи Коши (1789 – 1857 гг.) в работе «Исследование о многогранниках». В ней доказывается, что не существует других правильных многогранников, кроме перечисленных Пуансо. Автор приходит к выводу, что правильные звездчатые многогранники получаются из выпуклых правильных многогранников путем продолжения их ребер или граней, исследуется вопрос, из каких именно правильных многогранников могут быть получены правильные звездчатые многогранники. Делается вывод о том, что тетраэдр, куб и октаэдр не имеют звездчатых форм, додекаэдр имеет три, а икосаэдр – одну звездчатую форму (это малый звездчатый додекаэдр, большой додекаэдр и большой икосаэдр).
Слайд32.
Учитель: Луи Кэрролл писал: "Правильных многогранников вызывающе мало, но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук".
В глубины каких наук пробрались правильные многогранники? Где в жизни мы можем их повстречать?
9. Правильные многогранники и природа. (Слайд №33-40).
Например, скелет одноклеточного организма феодарии (Circjgjnia icosahtdra) по форме напоминает икосаэдр.
Чем же вызвана такая природная геометризация феодарий? По-видимому, тем, что из всех многогранников с тем же числом граней именно икосаэдр имеет наибольший объём при наименьшей площади поверхности. Это свойство помогает морскому организму преодолевать давление водной толщи.
Правильные многогранники – самые «выгодные» фигуры. И природа этим широко пользуется. Подтверждением тому служит форма некоторых кристаллов.
Взять хотя бы поваренную соль, без которой мы не можем обойтись. Известно, что она растворима в воде, служит проводником электрического тока. А кристаллы поваренной соли (NaCl) имеют форму куба.
При производстве алюминия пользуются алюминиево-калиевыми кварцами (K[Al(SO4)2] × 12H2O), монокристалл которых имеет форму правильного октаэдра.
Получение серной кислоты, железа, особых сортов цемента не обходится без сернистого колчедана (FeS). Кристаллы этого химического вещества имеют форму додекаэдра.
В разных химических реакциях применяется сурьменистый сернокислый натрий (Na5(SbO4(SO4)) – вещество, синтезированное учёными. Кристалл сурьменистого сернокислого натрия имеет форму тетраэдра.
Последний правильный многогранник – икосаэдр передаёт форму кристаллов бора (В). В своё время бор использовался для создания полупроводников первого поколения.
Правильные многогранники в искусстве. (Слайд №41-46)
Большой интерес к формам правильных многогранников проявляли также скульпторы, архитекторы, художники. Их всех поражало совершенство, гармония многогранников. Леонардо да Винчи (1452 – 1519) увлекался теорией многогранников и часто изображал их на своих полотнах.
Сальвадор Дали на картине “Тайная вечеря” изобразил И.Христа со своими учениками на фоне огромного прозрачного додекаэдра.
Знаменитый художник, увлекавшийся геометрией Альбрехт Дюрер (1471-1528) в известной гравюре “Меланхолия”, на переднем плане также изобразил додекаэдр.
10. А сейчас решим следующие задачи на закрепление. (Слайд №47-48)
1)Во сколько раз увеличится площадь поверхности октаэдра, если все его рёбра увеличить в 6 раз?
2)Найдите объём пространственного креста изображённого на рисунке и составленного из единичных кубов.
3)В кубе из одной вершины (Д) проведены диагонали граней ДА, ДВ и ДС, и концы их соединены прямыми. Доказать, что многогранник ДАВС, образованный четырьмя плоскостями, проходящие через эти прямые - правильный тетраэдр.
11. Рефлексия (7-8 минут). (Слайд №49)
- рефлексия деятельности учащихся на уроке.
-Что понравилось на уроке?
-Какой материал был наиболее интересен?
- Оцените свою работу на уроке: плохо работал, хорошо, отлично. Поднимите руки, кто работал плохо? Почему? И т.д.
- Связь геометрии, с какими науками вы увидели сегодня на уроке?
-В каких еще областях деятельности можно встретиться с правильными многогранниками?
- Как вы думаете, пригодятся ли вам знания данной темы в вашей будущей профессии?
12. Подведение итогов. Выставление оценок (2 минуты).
13. Домашнее задание.
Изготовить модели 5 правильных многогранников. По желанию - полуправильных и звездчатых (дополнительная оценка). Зарисовать правильные многогранники и их развёртки.
Примечание: Уроку предшествует очень большая подготовительная работа. Некоторые учащиеся получают задание подготовить рефераты и сообщения по конкретным темам геометрии, химии, биологии, МХК. При этом учитываются индивидуальные особенности детей, их профессиональные наклонности. Учителя-предметники проверяют рефераты и оценивают работу учащихся. Таким образом, оценки учащиеся могут получить не только по геометрии за работу на уроке, но и по другим предметам за подготовку реферата. Во время практической работы и после представления сообщений, рекомендуется выключать проектор. На втором уроке следует сделать динамическую паузу. Учитель сам должен определить её время проведения. Это могут быть упражнения для глаз (без использования компьютера) и несколько двигательных упражнений.