Меню
Разработки
Разработки  /  Математика  /  Уроки  /  7 класс  /  Конспект учебного занятия по математике "Разложение на множители с помощью квадрата суммы и квадрата разности"

Конспект учебного занятия по математике "Разложение на множители с помощью квадрата суммы и квадрата разности"

Работа обобщает и систематизирует знания учащихся о формулах сокращенного умножения и их геометрической интерпретации.
18.02.2014

Описание разработки

Цели урока:

Обучающие:

обобщение и систематизация знаний учащихся о формулах сокращенного умножения и их геометрической интерпретации,

формирование умений применять формулы в простейших ситуациях на уровне воспроизведения, а также в заданиях повышенной сложности.

подготовка к контролю знаний учащихся.

Развивающие:

развитие мышления, умения находить пути решения проблем, анализировать, обобщать, доказывать и опровергать, выявлять закономерности.

формирование  работы в парах при выполнении заданий.

развитие умений для осуществления самооценки и самокоррекции учебной деятельности.

Воспитательные:

воспитание ответственности, творческого отношения к учебному труду, умения работать в коллективе и группах;

формирование общекультурных ценностей на примере зависимости между математикой и другими видами наук и культуры.

Оборудование:

компьютер; интерактивная доска, проектор.

Интегративные связи:

Внутрипредметные:

«Умножение многочлена на многочлен»,

«Разложение многочлена на множители»,

«Применение формул сокращенного умножения в преобразованиях выражений».

Межпредметные

история.

Имя урока «Вся наша жизнь – ИГРА»

презентация своя игра

Ход урока

1. Организационный момент.

Мы изучили с вами тему “Возведение в квадрат суммы и разности двух выражений”. На прошлом уроке выяснили, как можно применить эти формулы для разложения многочленов на множители.  Ваша задача на этом уроке, показать, как вы усвоили изученный материал и как вы умеете применять полученные знания, а также как на сегодняшний день вы сами оцениваете свои знания.

2. Актуализация знаний учащихся.

Учитель: Некоторые правила сокращенного умножения были известны еще около 4 тыс. лет назад.

Тогда было принято все алгебраические утверждения выражать в геометрической форме.

Особенно широко алгебраическими тождествами пользовался в 3 в до н.э. древнегреческий геометр Евклид. У древних греков величины обозначались не числами или буквами, а отрезками  прямых. Они говорили не «а2», а «квадрат на отрезке а», не «ав», а «прямоугольник, содержащийся между отрезками а и в».

Во второй книге «Начал» Евклида формулировалось так: « Если прямая линия (имеется в виду отрезок) как- либо рассечена, то квадрат на всей прямой равен квадратам на отрезках вместе с дважды взятым прямоугольником, заключенным между отрезками».

Как вы думаете о какой формуле сокращенного умножения здесь говорится?

Верно, это тождество  ( а + в )22 + 2ав + в2.

Первым ученым, который отказался от геометрических способов выражения и перешел к алгебраическим уравнениям, был древнегреческий ученый-математик, живший в III веке до н. э. Диофант Александрийский. В своей книге «Арифметика» Диофант формулы квадрата суммы, квадрата разности и разности квадратов рассматривал уже с арифметической точки зрения. Ну а современную символику алгебраические тождества получили благодаря двум математикам, а именно Виету и Декарту(16 век).

3. Ребята, давайте вспомним, что вы изучили в данной теме.

Записать  формул сокращенного умножения на доске.

Устный счет

4. Звучит музыка. Фрагмент  Штраус-«Так  говорил Заратустра»– 

Учитель : Надеюсь вы узнали эти звути, приглашающие нас к игре. (учитель объясняет правила игры)

Весь материал - в архиве.

-80%
Курсы повышения квалификации

Профессиональная компетентность педагогов в условиях внедрения ФГОС

Продолжительность 72 часа
Документ: Удостоверение о повышении квалификации
4000 руб.
800 руб.
Подробнее
Скачать разработку
Сохранить у себя:
Конспект учебного занятия по математике "Разложение на множители с помощью квадрата суммы и квадрата разности" (1.24 MB)

Комментарии 0

Чтобы добавить комментарий зарегистрируйтесь или на сайт