Меню
Разработки
Разработки  /  Математика  /  Тесты  /  КИМ по математике (1 курс СПО)

КИМ по математике (1 курс СПО)

Материал предназначен для проведения итогового экзамена по математике за 1 курс СПО.
20.11.2013

Описание разработки

Для успешной подготовки к итоговому экзамену по математике году студентам следует обратить особое внимание на повторение тем, согласно стандарта.

  1. Тригонометрия:

Основные формулы тригонометрии. Функции и их графики. Решение тригонометрических уравнений и неравенств.

  1. Производная:

Правила вычисления производных. Производная сложной функции. Производная показательной функции. Метод интервалов. Применение производной к исследованию функции.

  1. Первообразная:

Основное свойство первообразной. Правила нахождения первообразных.

  1. Понятие степени:

Корень n-ой степени и его свойства. Степень с рациональным показателем. Решение иррациональных уравнений.

5. Показательная и логарифмическая функции:

Показательная функция. Решение показательных уравнений и неравенств. Логарифмы и их свойства. Логарифмическая функция. Решение логарифмических уравнений и неравенств. Свойства функций.

6. Стереометрия:

Многогранники. Тела вращения.

Критерии оценки контрольной работы

1 задание:

Степень с рациональным показателем – 1 балл

2 задание:

Степень с рациональным показателем – 1 балл

3 задание:

Свойства логарифмической функции – 1 балл

4 задание:

Основные тригонометрические формулы – 2 балла

5 задание:

Основные тригонометрические формулы–2 балла

6 задание:

Решение тригонометрических уравнений– 1 балл

7 задание:

Решение иррациональных уравнений – 2 балла

8 задание:

Решение показательных уравнений – 2 балла

9 задание:

Метод интервалов - Решение иррациональных уравнений – 1 балл

10 задание:

Свойства тригонометрических функций – 1 балл

11 задание:

Вычисление производных - 1 балл

12 задание:

Нахождение первообразной функции – 1 балл

13 задание:

Решение логарифмических уравнений – 1 балл

14 задание:

Нахождение максимального и минимального значений функции – 2 балла

15 задание:

Свойства тел в стереометрии – 1 балл

16 задание:

Площадь криволинейной трапеции – 3 балла

17 задание:

Построение графика логарифмической функции – 3 балла

18 задание:

Решение показательных неравенств - 3 балла

19 задание:

Многогранники - 3 балла

20 задание:

Тела вращения - 3 балла

Рекомендации для проверки (проведения) экзаменационного теста.

Тест состоит из 20 заданий.

Задания содержат по 4 варианта ответов, причем каждый вопрос имеет только один вариант правильного ответа. Выберите нужный вариант и отметьте соответствующую ячейку в таблицу ответов.

Максимальный балл за тест – 35.

0 – 14 баллов - «2» («неудовлетворительно»)

15 – 19 баллов - «3» («удовлетворительно»)

21 – 29 баллов - «4» («хорошо»)

30 – 35 баллов - «5» («отлично» )

Задания по математике

Весь материал - смотрите документ.

Содержимое разработки























Программа

итогового экзамена по математике

























Раменское,

2013 г.





Пояснительная записка


Программа итогового экзамена по математике предназначена для студентов СПО.

Тест является основной формой проверки знаний за курс математики.

Объем теста – 20 заданий.

Продолжительность проведения экзамена – 5 часов.











































Программа итогового экзамена по математике


Для успешной подготовки к итоговому экзамену по математике году студентам следует обратить особое внимание на повторение тем, согласно стандарта.

  1. Тригонометрия:

Основные формулы тригонометрии. Функции и их графики. Решение тригонометрических уравнений и неравенств.

  1. Производная:

Правила вычисления производных. Производная сложной функции. Производная показательной функции. Метод интервалов. Применение производной к исследованию функции.

  1. Первообразная:

Основное свойство первообразной. Правила нахождения первообразных.

  1. Понятие степени:

Корень n-ой степени и его свойства. Степень с рациональным показателем. Решение иррациональных уравнений.

5. Показательная и логарифмическая функции:

Показательная функция. Решение показательных уравнений и неравенств. Логарифмы и их свойства. Логарифмическая функция. Решение логарифмических уравнений и неравенств. Свойства функций.

6. Стереометрия:

Многогранники. Тела вращения.



















Критерии оценки контрольной работы

1 задание:

Степень с рациональным показателем – 1 балл

2 задание:

Степень с рациональным показателем – 1 балл

3 задание:

Свойства логарифмической функции – 1 балл

4 задание:

Основные тригонометрические формулы – 2 балла

5 задание:

Основные тригонометрические формулы–2 балла

6 задание:

Решение тригонометрических уравнений– 1 балл

7 задание:

Решение иррациональных уравнений – 2 балла

8 задание:

Решение показательных уравнений – 2 балла

9 задание:

Метод интервалов - Решение иррациональных уравнений – 1 балл

10 задание:

Свойства тригонометрических функций – 1 балл

11 задание:

Вычисление производных - 1 балл

12 задание:

Нахождение первообразной функции – 1 балл

13 задание:

Решение логарифмических уравнений – 1 балл

14 задание:

Нахождение максимального и минимального значений функции – 2 балла

15 задание:

Свойства тел в стереометрии – 1 балл

16 задание:

Площадь криволинейной трапеции – 3 балла

17 задание:

Построение графика логарифмической функции – 3 балла

18 задание:

Решение показательных неравенств - 3 балла

19 задание:

Многогранники - 3 балла

20 задание:

Тела вращения - 3 балла





Рекомендации для проверки (проведения) экзаменационного теста.



Тест состоит из 20 заданий.

Задания содержат по 4 варианта ответов, причем каждый вопрос имеет только один вариант правильного ответа. Выберите нужный вариант и отметьте соответствующую ячейку в таблицу ответов.


Максимальный балл за тест – 35.


0 – 14 баллов - «2» («неудовлетворительно»)

15 – 19 баллов - «3» («удовлетворительно»)

21 – 29 баллов - «4» («хорошо»)

30 – 35 баллов - «5» («отлично» )





































Ответы





Вариант 1


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

1













2















3



















4





















Вариант 2


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

1

















2

















3














4




















Вариант 3


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

1

















2















3

















4





































Бланк ответов

экзаменационного теста

по математике




Ф.И.О.___________________________________________________

Группа № ________________________

Специальность ____________________





___ вариант.






1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

1





















2





















3





















4







































Вариант 1

  1. Вычислите 29 – 15.

    1. 2) 43 3) 73 4) 101.

  1. Упростите выражение .

  1. 5 2) 1 3) 10 4) 0.

3) Упростите выражение – 2.

1) 2) 1 3) 8 4) 20.

4) Найдите значение , если = -0,8 и .

1) -0,6 2) 0,6 3) 0,2 4) 0,36

5) Упростите выражение 7cos2α – 5 + 7sin2α.

1) 1 + cos2α 2) 2 3) -12 4) 12.

6) Решите уравнение = 1.

1)2n, n 2) 3) +2n, n 4) n, n

7) Укажите промежуток, которому принадлежит корень уравнения = -х.

1) 2) (35;37) 3) (-2; 4) .

8) Укажите промежуток, которому принадлежит корень уравнения = 8.

1) [-4;0) 2) [0;1) 3) [-∞;-4) 4) [4;6).

9) Решите неравенство ≤0.

1) (-∞;-2) [) 2) [-2;) ( 1;+∞) 3) (-∞;-2) 4) (-∞;-5) (-2;.

10) Найдите множество значений функции у =– 2.

1) [3;1] 2) (-∞;+∞) 3) [-1;1] 4) [-3;-1].

11) Найдите производную функции f(x) = .

1) -4 2) -8 3) 8 4) .

12) Укажите первообразную функции f(x) = 2х + 4х3 – 1.

1) х2 + х4 – х 2) 2х2 + 4х4 3) 2 + 12х2 4) х24.

13) Решите равнение + = .

1) 0 2) 4 3) 9 4) 15.

14) Найдите точки максимума функции у = х3 – 3х2 .

1) 0 2) 2 3) -2 4) 3.

15) Найдите диагонали прямоугольного параллелепипеда по трем его измерениям: 2; 2; 1.

1) 5 2) 10 3) 3 4) 31.

16) Вычислите площадь фигуры (S), ограниченной линиями у = 4 – х2, у = 0, х = 0, х = 2.

1) 8 2) 2 3) 5 4) 6.

17) Укажите область определения функции у =.

1) (-∞;0)(2;+∞) 2) (-2;+∞) 3) (2;+∞) 4) (0;2).

18) Найдите наибольшее целое решение неравенства – 1 0.

1) 0 2) -1 3) 1 4) 2.

19) Площади двух граней прямоугольного параллелепипеда равны 56дм2 и 192дм2, а длина их общего ребра 8дм. Найдите объем параллелепипеда.

1) 840 2) 1029 3) 1344 4) 1210.

20) Образующая конуса равна 12см и составляет с плоскостью основания угол 300. Найдите объем конуса, считая = 3.

1) 384 2) 192 3) 24 4) 648.

Вариант 2

  1. Вычислите 7 - 3∙.

    1. 2) 8 3) -5 4) -17.

  1. Упростите выражение .

1) 1,2 2) 5 3) 4) .

3) Упростите выражение + - .

1) 2 +2 2) 7 3) 3 - 6 4) 2.

4) Найдите значение, если = и 0.

1) - 2) 3) 4) .

5) Упростите выражение -3sin2α - 6 – 3cos2α.

1) 1 2) 2cosα 3) cosα + 4) -9 .

6) Укажите промежуток, которому принадлежит корень уравнения = -х.

1) 2) (-;-10) 3) 4) .

7) Решите уравнение = 1.

1) n, n 2) 3) +2n, n 4) n,n.

8) Укажите промежуток, которому принадлежит корень уравнения = 125.

1) [-4;0) 2) [0;1) 3) [1;4) 4) [4;6).

9) Решите неравенство ≤ 0.

1) (-2;) 2) [-2;2) (;+∞) 3) (-∞;3) 4) (-∞;-2) (].

10) Найдите множество значений функции у = + 4.

1) [3;5] 2) (-∞;+∞) 3) [-1;1] 4) [-5;-3].

11) Найдите производную функции f(x) = .

1) 3 2) 3) -3 4) -.

12) Укажите первообразную функции f(x) = 3х2 + 2х -4.

1) х3+ х2 - 4х 2) 6х + 2 3) х3+ х2 4) х2+ х – 4х.

13) Решите равнение + =

1) 0 2) 11 3) 3 4) 12.

14) Найдите точку минимума функции у = х2 - 1.

1) -1 2) 1 3) -2 4) 0.

15) Найдите диагонали прямоугольного параллелепипеда по трем его измерениям: 2; 3; 6.

1) 55 2) 7 3) 49 4) 11.

16) Вычислите площадь фигуры (S), ограниченной линиями у = х3 + 1, у = 0, х = 0, х = 2.

1) 8 2) 5 3) 6 4) 4.

17) Укажите область определения функции у =.

1) (-∞;0)(4;+∞) 2) (-4;+∞) 3) (4;+∞) 4) (0;4).

18) Найдите наименьшее целое решение неравенства – 1 0.

1) 0 2) 1 3) -1 4) 2.

19) Площади двух граней прямоугольного параллелепипеда равны 35см2 и 42см2, а длина их общего ребра 7см. Найдите объем параллелепипеда.

1) 840 2) 10290 3) 770 4) 210.

20) Образующая конуса равна 24см и составляет с плоскостью основания угол 300. Найдите объем конуса, считая = 3.

1) 3840 2) 1092 3) 5184 4) 648.

Вариант 3

1) Вычислите 2∙ – 0,90

1)10,9 2) 11 3) 9,1 4) 9.

2) Упростите выражение

  1. 2) 2 3) 0,7 4) 36.

3) Упростите выражение - +

1) -1 + 2) -2 3) 0 4) .

4) Найдите значение , если = - и

1) 2) 3) 4)

5) Упростите выражение -4sin2α +5 – 4cos2α

1) 1 2) 1 + 8sin2α 3) 1 + 8cos2α 4) 9.

6) Укажите промежуток, которому принадлежит корень уравнения = -х

1) 2) (-∞;-2) 3) 4) .

7) Решите уравнение = -1

1) 2)0 3) +2n, n 4) n, n

8) Укажите промежуток, которому принадлежит корень уравнения = 16

1) [-4;0) 2) [0;1) 3) [1;4) 4) [4;6).

9) Решите неравенство ≥0

1) (-∞;-8] (; 2) 2) [-8;) ( 2;+∞) 3) (-∞; 2) 4) (-∞;-8) (2; +∞.

10) Найдите множество значений функции у = – 1

1) [-1;1] 2) (-∞;+∞) 3) [-2;0] 4) [0;2].

11) Найдите производную функции f(x) =

1) -18 2) 6 3) 18 4) .

12) Укажите первообразную функции f(x) = 5х4 – 2х + 1

1) 5х5 – 2х2 + 1 2) 20х3 – х 3) х4 – 2х + х 4) х5 – х2 + х.

13) Решите равнение + =

1) 15 2) 5 3) 4 4) 10.

14) Найдите точку максимума функции у = 4х – х4

1) 4 2) 2 3) -4 4) 0.

15) Найдите диагонали прямоугольного параллелепипеда по трем его измерениям: 6; 6; 7

1) 19 2) 11 3) 121 4) 36.

16) Вычислите площадь фигуры (S), ограниченной линиями у = 1 – х3, у = 0, х = 0, х = 1.

1) 1 2) 3) 4) 1.

17) Укажите область определения функции у =.

1) (-3;+∞) 2) (-∞;0)(3;+∞) 3) (3;+∞) 4) (0;3).

18) Найдите наибольшее целое решение неравенства – 1 0.

1) 1 2) -1 3) 2 4) 0.

19) Площади двух граней прямоугольного параллелепипеда равны 20см2 и 45см2, а длина их общего ребра 5см. Найдите объем параллелепипеда.

1) 240 2) 120 3) 180 4) 4500.

20) Образующая конуса равна 18дм и составляет с плоскостью основания угол 300. Найдите объем конуса, считая = 3.

1) 3804 2) 2192 3) 2187 4) 6408.

-80%
Курсы повышения квалификации

Педагог дополнительного профессионального образования

Продолжительность 72 часа
Документ: Удостоверение о повышении квалификации
4000 руб.
800 руб.
Подробнее
Скачать разработку
Сохранить у себя:
КИМ по математике (1 курс СПО) (49.12 КB)

Комментарии 2

Чтобы добавить комментарий зарегистрируйтесь или на сайт

Светлана, 28.04.2016 21:47
хорошая работа
vlad, 29.02.2016 06:12
спасибо огромное, очень полезный материал!!!