Меню
Разработки
Разработки  /  Математика  /  Подготовка к ОГЭ  /  9 класс  /  Функции и их свойства. Графики

Функции и их свойства. Графики

Работа состоит из трех модулей: «Алгебра», «Геометрия», «Реальная математика». В модули «Алгебра» и «Геометрия» входит две части, соответствующие проверке на базовом и повышенном уровнях, в модуль «Реальная математика» - одна часть, соответствующая проверке на базовом уровне.

При проверке базовой математической компетентности учащиеся должны продемонстрировать: владение основными алгоритмами, знание и понимание ключевых элементов содержания (математических понятий, их свойств, приемов решения задач и пр.), умение пользоваться математической записью, применять знания к решению математических задач, не сводящихся к прямому применению алгоритма, а также применять математические знания в простейших практических ситуациях.

Части 2 модулей «Алгебра» и «Геометрия» направлены на проверку владения материалом на повышенном уровне. Их назначение - дифференцировать хорошо успевающих школьников по уровням подготовки, выявить наиболее подготовленную часть выпускников, составляющую потенциальный контингент профильных классов.

Эти части содержат задания повышенного уровня сложности из различных разделов курса математики. Все задания требуют записи решений и ответа. Задания расположены по нарастанию трудности - от относительно более простых до сложных, предполагающих свободное владение материалом курса и хороший уровень математической культуры.

29.01.2017

Содержимое разработки

Кусочно-непрерывные функции

1. По­строй­те гра­фик функ­ции   и опре­де­ли­те, при каких зна­че­ни­ях па­ра­мет­ра пря­мая имеет с гра­фи­ком ровно одну общую точку.

2. По­строй­те гра­фик функ­ции  и най­ди­те все зна­че­ние , при ко­то­рых пря­мая  имеет с гра­фи­ком дан­ной функ­ции ровно одну общую точку.

3. По­строй­те гра­фик функ­ции  и най­ди­те все зна­че­ния , при ко­то­рых пря­мая  не имеет с гра­фи­ком дан­ной функ­ции общих точек.

4. По­строй­те гра­фик функ­ции    и опре­де­ли­те, при каких зна­че­ни­ях    пря­мая    имеет с гра­фи­ком три общие точки.

5. По­строй­те гра­фик функ­ции и най­ди­те зна­че­ния , при ко­то­рых пря­мая имеет с ним ровно две общие точки.

6. По­строй­те гра­фик функ­ции

 

и опре­де­ли­те, при каких зна­че­ни­ях пря­мая имеет с гра­фи­ком ровно две общие точки.

7. По­строй­те гра­фик функ­ции и опре­де­ли­те, при каких зна­че­ни­ях пря­мая не будет иметь с по­стро­ен­ным гра­фи­ком ни одной общей точки.

8. По­строй­те гра­фик функ­ции и опре­де­ли­те, при каких зна­че­ни­ях па­ра­мет­ра a он имеет ровно две общие точки с пря­мой y = a.

9. По­строй­те гра­фик функ­ции

 

и опре­де­ли­те, при каких зна­че­ни­ях пря­мая будет пе­ре­се­кать по­стро­ен­ный гра­фик в трёх точ­ках.

10. По­строй­те гра­фик функ­ции и опре­де­ли­те, при каких зна­че­ни­ях пря­мая имеет с гра­фи­ком ровно три общие точки.

11. По­строй­те гра­фик функ­ции

 

и опре­де­ли­те, при каких зна­че­ни­ях пря­мая будет иметь с гра­фи­ком един­ствен­ную общую точку.

12. По­строй­те гра­фик функ­ции

 

и опре­де­ли­те, при каких зна­че­ни­ях пря­мая будет пе­ре­се­кать по­стро­ен­ный гра­фик в трёх точ­ках.

13. По­строй­те гра­фик функ­ции и най­ди­те все зна­че­ния при ко­то­рых пря­мая имеет с гра­фи­ком дан­ной функ­ции ровно одну общую точку.

14. По­строй­те гра­фик функ­ции и най­ди­те все зна­че­ния при ко­то­рых он имеет ровно три общие точки с пря­мой

15. По­строй­те гра­фик функ­ции

 

 

и опре­де­ли­те, при каких зна­че­ни­ях m пря­мая y = m имеет с гра­фи­ком ровно две общие точки.

16. По­строй­те гра­фик функ­ции и опре­де­ли­те, при каких зна­че­ни­ях пря­мая имеет с гра­фи­ком ровно три общие точки.

17. По­строй­те гра­фик функ­ции и опре­де­ли­те, при каких зна­че­ни­ях пря­мая имеет с гра­фи­ком ровно две общие точки.

18. По­строй­те гра­фик функ­ции и опре­де­ли­те, при каких зна­че­ни­ях пря­мая имеет с гра­фи­ком ровно три общие точки.

19. По­строй­те гра­фик функ­ции и опре­де­ли­те, при каких зна­че­ни­ях пря­мая имеет с гра­фи­ком ровно одну общую точку.

20. По­строй­те гра­фик функ­ции и опре­де­ли­те, при каких зна­че­ни­ях пря­мая не имеет с гра­фи­ком ни одной общей точки.

21. По­строй­те гра­фик функ­ции Какое наи­боль­шее число общих точек гра­фик дан­ной функ­ции может иметь с пря­мой, па­рал­лель­ной оси абс­цисс?

22. По­строй­те гра­фик функ­ции

 

и опре­де­ли­те, при каких зна­че­ни­ях пря­мая имеет с гра­фи­ком одну или две общие точки.

23. По­строй­те гра­фик функ­ции

 

 

и опре­де­ли­те, при каких зна­че­ни­ях m пря­мая y = m имеет с гра­фи­ком ровно две общие точки.

24. По­строй­те гра­фик функ­ции

 

 

и опре­де­ли­те, при каких зна­че­ни­ях m пря­мая y = m имеет с гра­фи­ком ровно две общие точки.

25. По­строй­те гра­фик функ­ции и опре­де­ли­те, при каких зна­че­ни­ях m пря­мая y = m имеет с гра­фи­ком ровно одну общую точку.

26. По­строй­те гра­фик функ­ции и опре­де­ли­те, при каких зна­че­ни­ях m пря­мая y = m не имеет с гра­фи­ком ни одной общей точки.

27. По­строй­те гра­фик функ­ции

 

и опре­де­ли­те, при каких зна­че­ни­ях пря­мая имеет с гра­фи­ком ровно две общие точки.

28. По­строй­те гра­фик функ­ции . Какое наи­боль­шее число общих точек гра­фик дан­ной функ­ции может иметь с пря­мой, па­рал­лель­ной оси абс­цисс?

29. По­строй­те гра­фик функ­ции

 

и опре­де­ли­те, при каких зна­че­ни­ях пря­мая имеет с гра­фи­ком ровно две общие точки.

30. По­строй­те гра­фик функ­ции и най­ди­те зна­че­ния , при ко­то­рых пря­мая имеет с ним ровно три общие точки.

31. По­строй­те гра­фик функ­ции . Опре­де­ли­те, при каких зна­че­ни­ях пря­мая имеет с гра­фи­ком ровно одну общую точку.

32. Най­ди­те  и по­строй­те гра­фик функ­ции, если из­вест­но, что пря­мая  имеет с гра­фи­ком ровно одну общую точку.



-80%
Курсы повышения квалификации

Проектная деятельность учащихся

Продолжительность 72 часа
Документ: Удостоверение о повышении квалификации
4000 руб.
800 руб.
Подробнее
Скачать разработку
Сохранить у себя:
Функции и их свойства. Графики (199.58 KB)

Комментарии 0

Чтобы добавить комментарий зарегистрируйтесь или на сайт