Меню
Разработки
Разработки  /  Математика  /  Подготовка к ОГЭ  /  9 класс  /  Анализ геометрических высказываний

Анализ геометрических высказываний

Работа состоит из трех модулей: «Алгебра», «Геометрия», «Реальная математика». В модули «Алгебра» и «Геометрия» входит две части, соответствующие проверке на базовом и повышенном уровнях, в модуль «Реальная математика» - одна часть, соответствующая проверке на базовом уровне.

При проверке базовой математической компетентности учащиеся должны продемонстрировать: владение основными алгоритмами, знание и понимание ключевых элементов содержания (математических понятий, их свойств, приемов решения задач и пр.), умение пользоваться математической записью, применять знания к решению математических задач, не сводящихся к прямому применению алгоритма, а также применять математические знания в простейших практических ситуациях.

Части 2 модулей «Алгебра» и «Геометрия» направлены на проверку владения материалом на повышенном уровне. Их назначение - дифференцировать хорошо успевающих школьников по уровням подготовки, выявить наиболее подготовленную часть выпускников, составляющую потенциальный контингент профильных классов.

Эти части содержат задания повышенного уровня сложности из различных разделов курса математики. Все задания требуют записи решений и ответа. Задания расположены по нарастанию трудности - от относительно более простых до сложных, предполагающих свободное владение материалом курса и хороший уровень математической культуры.

17.01.2017

Содержимое разработки

1. Ука­жи­те но­ме­ра вер­ных утвер­жде­ний.

 

1) Если два угла од­но­го тре­уголь­ни­ка равны двум углам дру­го­го тре­уголь­ни­ка, то такие тре­уголь­ни­ки по­доб­ны.

2) Вер­ти­каль­ные углы равны.

3) Любая бис­сек­три­са рав­но­бед­рен­но­го тре­уголь­ни­ка яв­ля­ет­ся его ме­ди­а­ной.

 

Если утвер­жде­ний не­сколь­ко, за­пи­ши­те их но­ме­ра в по­ряд­ке воз­рас­та­ния.

2. Ука­жи­те но­ме­ра вер­ных утвер­жде­ний.

 

1) Су­ще­ству­ет квад­рат, ко­то­рый не яв­ля­ет­ся пря­мо­уголь­ни­ком.

2) Если два угла тре­уголь­ни­ка равны, то равны и про­ти­во­ле­жа­щие им сто­ро­ны.

3) Внут­рен­ние на­крест ле­жа­щие углы, об­ра­зо­ван­ные двумя па­рал­лель­ны­ми пря­мы­ми и се­ку­щей, равны.

 

Если утвер­жде­ний не­сколь­ко, за­пи­ши­те их но­ме­ра в по­ряд­ке воз­рас­та­ния.

3. Ука­жи­те но­ме­ра вер­ных утвер­жде­ний.

 

1) Бис­сек­три­са рав­но­бед­рен­но­го тре­уголь­ни­ка, про­ведённая из вер­ши­ны, про­ти­во­ле­жа­щей ос­но­ва­нию, делит ос­но­ва­ние на две рав­ные части.

2) В любом пря­мо­уголь­ни­ке диа­го­на­ли вза­им­но пер­пен­ди­ку­ляр­ны.

3) Для точки, ле­жа­щей на окруж­но­сти, рас­сто­я­ние до цен­тра окруж­но­сти равно ра­ди­у­су.

 

Если утвер­жде­ний не­сколь­ко, за­пи­ши­те их но­ме­ра в по­ряд­ке воз­рас­та­ния.

4. Ука­жи­те но­ме­ра вер­ных утвер­жде­ний.

 

1) Цен­тры впи­сан­ной и опи­сан­ной окруж­но­стей рав­но­сто­рон­не­го тре­уголь­ни­ка сов­па­да­ют.

2) Су­ще­ству­ет квад­рат, ко­то­рый не яв­ля­ет­ся ром­бом.

3) Сумма углов лю­бо­го тре­уголь­ни­ка равна 180° .

 

Если утвер­жде­ний не­сколь­ко, за­пи­ши­те их но­ме­ра в по­ряд­ке воз­рас­та­ния.

5. Ука­жи­те но­ме­ра вер­ных утвер­жде­ний.

 

1) Если угол ост­рый, то смеж­ный с ним угол также яв­ля­ет­ся ост­рым.

2) Диа­го­на­ли квад­ра­та вза­им­но пер­пен­ди­ку­ляр­ны.

3) В плос­ко­сти все точки, рав­но­удалённые от за­дан­ной точки, лежат на одной окруж­но­сти.

 

Если утвер­жде­ний не­сколь­ко, за­пи­ши­те их но­ме­ра в по­ряд­ке воз­рас­та­ния.

6. Ука­жи­те но­ме­ра вер­ных утвер­жде­ний.

 

1) Если три сто­ро­ны од­но­го тре­уголь­ни­ка про­пор­ци­о­наль­ны трём сто­ро­нам дру­го­го тре­уголь­ни­ка, то тре­уголь­ни­ки по­доб­ны.

2) Сумма смеж­ных углов равна 180°.

3) Любая вы­со­та рав­но­бед­рен­но­го тре­уголь­ни­ка яв­ля­ет­ся его бис­сек­три­сой.

 

Если утвер­жде­ний не­сколь­ко, за­пи­ши­те их но­ме­ра в по­ряд­ке воз­рас­та­ния.

7. Какие из сле­ду­ю­щих утвер­жде­ний верны?

 

1) Если угол равен 45°, то вер­ти­каль­ный с ним угол равен 45°.

2) Любые две пря­мые имеют ровно одну общую точку.

3) Через любые три точки про­хо­дит ровно одна пря­мая.

4) Если рас­сто­я­ние от точки до пря­мой мень­ше 1, то и длина любой на­клон­ной, про­ве­ден­ной из дан­ной точки к пря­мой, мень­ше 1.

 

Если утвер­жде­ний не­сколь­ко, за­пи­ши­те их но­ме­ра в по­ряд­ке воз­рас­та­ния.

8. Какие из сле­ду­ю­щих утвер­жде­ний верны?

 

1) Если при пе­ре­се­че­нии двух пря­мых тре­тьей пря­мой со­от­вет­ствен­ные углы равны 65°, то эти две пря­мые па­рал­лель­ны.

2) Любые две пря­мые имеют не менее одной общей точки.

3) Через любую точку про­хо­дит более одной пря­мой.

4) Любые три пря­мые имеют не менее одной общей точки.

 

Если утвер­жде­ний не­сколь­ко, за­пи­ши­те их но­ме­ра в по­ряд­ке воз­рас­та­ния.

9. Какие из сле­ду­ю­щих утвер­жде­ний верны?

 

1) Если при пе­ре­се­че­нии двух пря­мых тре­тьей пря­мой внут­рен­ние на­крест ле­жа­щие углы со­став­ля­ют в сумме 90°, то эти две пря­мые па­рал­лель­ны.

2) Если угол равен 60°, то смеж­ный с ним равен 120°.

3) Если при пе­ре­се­че­нии двух пря­мых тре­тьей пря­мой внут­рен­ние од­но­сто­рон­ние углы равны 70° и 110°, то эти две пря­мые па­рал­лель­ны.

4) Через любые три точки про­хо­дит не более одной пря­мой.

 

Если утвер­жде­ний не­сколь­ко, за­пи­ши­те их но­ме­ра в по­ряд­ке воз­рас­та­ния.

10. Какие из сле­ду­ю­щих утвер­жде­ний верны?

 

1) Впи­сан­ные углы, опи­ра­ю­щи­е­ся на одну и ту же хорду окруж­но­сти, равны.

2) Если ра­ди­у­сы двух окруж­но­стей равны 5 и 7, а рас­сто­я­ние между их цен­тра­ми равно 3, то эти окруж­но­сти не имеют общих точек.

3) Если ра­ди­ус окруж­но­сти равен 3, а рас­сто­я­ние от цен­тра окруж­но­сти до пря­мой равно 2, то эти пря­мая и окруж­ность пе­ре­се­ка­ют­ся.

4) Если впи­сан­ный угол равен 30°, то дуга окруж­но­сти, на ко­то­рую опи­ра­ет­ся этот угол, равна 60°.

 

Если утвер­жде­ний не­сколь­ко, за­пи­ши­те их но­ме­ра в по­ряд­ке воз­рас­та­ния.

11. Какие из сле­ду­ю­щих утвер­жде­ний верны?

 

1) Через любые три точки про­хо­дит не более одной окруж­но­сти.

2) Если рас­сто­я­ние между цен­тра­ми двух окруж­но­стей боль­ше суммы их диа­мет­ров, то эти окруж­но­сти не имеют общих точек.

3) Если ра­ди­у­сы двух окруж­но­стей равны 3 и 5, а рас­сто­я­ние между их цен­тра­ми равно 1, то эти окруж­но­сти пе­ре­се­ка­ют­ся.

4) Если дуга окруж­но­сти со­став­ля­ет 80°, то впи­сан­ный угол, опи­ра­ю­щий­ся на эту дугу окруж­но­сти, равен 40°.

 

Если утвер­жде­ний не­сколь­ко, за­пи­ши­те их но­ме­ра в по­ряд­ке воз­рас­та­ния.

12. Какие из сле­ду­ю­щих утвер­жде­ний верны?

 

1) Сумма углов вы­пук­ло­го че­ты­рех­уголь­ни­ка равна 180°.

2) Если один из углов па­рал­ле­ло­грам­ма равен 60°, то про­ти­во­по­лож­ный ему угол равен 120°.

3) Диа­го­на­ли квад­ра­та делят его углы по­по­лам.

4) Если в че­ты­рех­уголь­ни­ке две про­ти­во­по­лож­ные сто­ро­ны равны, то этот че­ты­рех­уголь­ник — па­рал­ле­ло­грамм.

 

Если утвер­жде­ний не­сколь­ко, за­пи­ши­те их но­ме­ра в по­ряд­ке воз­рас­та­ния.

13. Какие из сле­ду­ю­щих утвер­жде­ний верны?

 

1) Если в па­рал­ле­ло­грам­ме диа­го­на­ли равны, то этот па­рал­ле­ло­грамм — пря­мо­уголь­ник.

2) Если диа­го­на­ли па­рал­ле­ло­грам­ма делят его углы по­по­лам, то этот па­рал­ле­ло­грамм — ромб.

3) Если один из углов, при­ле­жа­щих к сто­ро­не па­рал­ле­ло­грам­ма, равен 50°, то дру­гой угол, при­ле­жа­щий к той же сто­ро­не, равен 50°.

4) Если сумма трех углов вы­пук­ло­го че­ты­рех­уголь­ни­ка равна 200°, то его чет­вер­тый угол равен 160°.

 

Если утвер­жде­ний не­сколь­ко, за­пи­ши­те их но­ме­ра в по­ряд­ке воз­рас­та­ния.

14. Какие из сле­ду­ю­щих утвер­жде­ний верны?

 

1) Около вся­ко­го тре­уголь­ни­ка можно опи­сать не более одной окруж­но­сти.

2) В любой тре­уголь­ник можно впи­сать не менее одной окруж­но­сти.

3) Цен­тром окруж­но­сти, опи­сан­ной около тре­уголь­ни­ка, яв­ля­ет­ся точка пе­ре­се­че­ния бис­сек­трис.

4) Цен­тром окруж­но­сти, впи­сан­ной в тре­уголь­ник, яв­ля­ет­ся точка пе­ре­се­че­ния се­ре­дин­ных пер­пен­ди­ку­ля­ров к его сто­ро­нам.

 

Если утвер­жде­ний не­сколь­ко, за­пи­ши­те их но­ме­ра в по­ряд­ке воз­рас­та­ния.

15. Какие из сле­ду­ю­щих утвер­жде­ний верны?

 

1) Около лю­бо­го пра­виль­но­го мно­го­уголь­ни­ка можно опи­сать не более одной окруж­но­сти.

2) Центр окруж­но­сти, опи­сан­ной около тре­уголь­ни­ка со сто­ро­на­ми, рав­ны­ми 3, 4, 5, на­хо­дит­ся на сто­ро­не этого тре­уголь­ни­ка.

3) Цен­тром окруж­но­сти, опи­сан­ной около квад­ра­та, яв­ля­ет­ся точка пе­ре­се­че­ния его диа­го­на­лей.

4) Около лю­бо­го ромба можно опи­сать окруж­ность.

 

Если утвер­жде­ний не­сколь­ко, за­пи­ши­те их но­ме­ра в по­ряд­ке воз­рас­та­ния.

16. Какие из сле­ду­ю­щих утвер­жде­ний верны?

 

1) Окруж­ность имеет бес­ко­неч­но много цен­тров сим­мет­рии.

2) Пря­мая не имеет осей сим­мет­рии.

3) Пра­виль­ный пя­ти­уголь­ник имеет пять осей сим­мет­рии.

4) Квад­рат не имеет цен­тра сим­мет­рии.

 

Если утвер­жде­ний не­сколь­ко, за­пи­ши­те их но­ме­ра в по­ряд­ке воз­рас­та­ния.

17. Какие из сле­ду­ю­щих утвер­жде­ний верны?

 

1) Пра­виль­ный ше­сти­уголь­ник имеет шесть осей сим­мет­рии.

2) Пря­мая не имеет осей сим­мет­рии.

3) Цен­тром сим­мет­рии ромба яв­ля­ет­ся точка пе­ре­се­че­ния его диа­го­на­лей.

4) Рав­но­бед­рен­ный тре­уголь­ник имеет три оси сим­мет­рии.

 

Если утвер­жде­ний не­сколь­ко, за­пи­ши­те их но­ме­ра в по­ряд­ке воз­рас­та­ния.

18. Какие из сле­ду­ю­щих утвер­жде­ний верны?

 

1) Цен­тром сим­мет­рии пря­мо­уголь­ни­ка яв­ля­ет­ся точка пе­ре­се­че­ния диа­го­на­лей.

2) Цен­тром сим­мет­рии ромба яв­ля­ет­ся точка пе­ре­се­че­ния его диа­го­на­лей.

3) Пра­виль­ный пя­ти­уголь­ник имеет пять осей сим­мет­рии.

4) Цен­тром сим­мет­рии рав­но­бед­рен­ной тра­пе­ции яв­ля­ет­ся точка пе­ре­се­че­ния ее диа­го­на­лей.

 

Если утвер­жде­ний не­сколь­ко, за­пи­ши­те их но­ме­ра в по­ряд­ке воз­рас­та­ния.

19. Какие из сле­ду­ю­щих утвер­жде­ний верны?

 

1) Если катет и ги­по­те­ну­за пря­мо­уголь­но­го тре­уголь­ни­ка равны со­от­вет­ствен­но 6 и 10, то вто­рой катет этого тре­уголь­ни­ка равен 8.

2) Любые два рав­но­бед­рен­ных тре­уголь­ни­ка по­доб­ны.

3) Любые два пря­мо­уголь­ных тре­уголь­ни­ка по­доб­ны.

4) Тре­уголь­ник ABC, у ко­то­ро­го AB = 3, BC = 4, AC = 5, яв­ля­ет­ся ту­по­уголь­ным.

 

Если утвер­жде­ний не­сколь­ко, за­пи­ши­те их но­ме­ра в по­ряд­ке воз­рас­та­ния.

20. Какие из сле­ду­ю­щих утвер­жде­ний верны?

 

1) Любые два пря­мо­уголь­ных тре­уголь­ни­ка по­доб­ны.

2) Если катет и ги­по­те­ну­за пря­мо­уголь­но­го тре­уголь­ни­ка равны со­от­вет­ствен­но 6 и 10, то вто­рой катет этого тре­уголь­ни­ка равен 8.

3) Сто­ро­ны тре­уголь­ни­ка про­пор­ци­о­наль­ны ко­си­ну­сам про­ти­во­ле­жа­щих углов.

4) Квад­рат любой сто­ро­ны тре­уголь­ни­ка равен сумме квад­ра­тов двух дру­гих сто­рон без удво­ен­но­го про­из­ве­де­ния этих сто­рон на ко­си­нус угла между ними.

 

Если утвер­жде­ний не­сколь­ко, за­пи­ши­те их но­ме­ра в по­ряд­ке воз­рас­та­ния.

21. Какие из сле­ду­ю­щих утвер­жде­ний верны?

 

1) Квад­рат любой сто­ро­ны тре­уголь­ни­ка равен сумме квад­ра­тов двух дру­гих сто­рон без удво­ен­но­го про­из­ве­де­ния этих сто­рон на синус угла между ними.

2) Если ка­те­ты пря­мо­уголь­но­го тре­уголь­ни­ка равны 5 и 12, то его ги­по­те­ну­за равна 13.

3) Тре­уголь­ник ABC, у ко­то­ро­го AB = 5, BC = 6, AC = 7, яв­ля­ет­ся ост­ро­уголь­ным.

4) В пря­мо­уголь­ном тре­уголь­ни­ке квад­рат ка­те­та равен раз­но­сти квад­ра­тов ги­по­те­ну­зы и дру­го­го ка­те­та.

 

Если утвер­жде­ний не­сколь­ко, за­пи­ши­те их но­ме­ра в по­ряд­ке воз­рас­та­ния.

22. Какие из сле­ду­ю­щих утвер­жде­ний верны?

 

1) Если пло­ща­ди фигур равны, то равны и сами фи­гу­ры.

2) Пло­щадь тра­пе­ции равна про­из­ве­де­нию суммы ос­но­ва­ний на вы­со­ту.

3) Если две сто­ро­ны тре­уголь­ни­ка равны 4 и 5, а угол между ними равен 30°, то пло­щадь этого тре­уголь­ни­ка равна 10.

4) Если две смеж­ные сто­ро­ны па­рал­ле­ло­грам­ма равны 4 и 5, а угол между ними равен 30°, то пло­щадь этого па­рал­ле­ло­грам­ма равна 10.

 

Если утвер­жде­ний не­сколь­ко, за­пи­ши­те их но­ме­ра в по­ряд­ке воз­рас­та­ния.

23. Какие из сле­ду­ю­щих утвер­жде­ний верны?

 

1) Пло­щадь мно­го­уголь­ни­ка, опи­сан­но­го около окруж­но­сти, равна про­из­ве­де­нию его пе­ри­мет­ра на ра­ди­ус впи­сан­ной окруж­но­сти.

2) Если диа­го­на­ли ромба равна 3 и 4, то его пло­щадь равна 6.

3) Пло­щадь тра­пе­ции мень­ше про­из­ве­де­ния суммы ос­но­ва­ний на вы­со­ту.

4) Пло­щадь пря­мо­уголь­но­го тре­уголь­ни­ка мень­ше про­из­ве­де­ния его ка­те­тов.

 

Если утвер­жде­ний не­сколь­ко, за­пи­ши­те их но­ме­ра в по­ряд­ке воз­рас­та­ния.

24. Ука­жи­те но­ме­ра вер­ных утвер­жде­ний.

 

1) Через точку, не ле­жа­щую на дан­ной пря­мой, можно про­ве­сти пря­мую, па­рал­лель­ную этой пря­мой.

2) Тре­уголь­ник со сто­ро­на­ми 1, 2, 4 су­ще­ству­ет.

3) Если в ромбе один из углов равен 90°, то такой ромб — квад­рат.

4) Центр опи­сан­ной около тре­уголь­ни­ка окруж­но­сти все­гда лежит внут­ри этого тре­уголь­ни­ка.

 

Если утвер­жде­ний не­сколь­ко, за­пи­ши­те их но­ме­ра в по­ряд­ке воз­рас­та­ния.

25. Ука­жи­те но­ме­ра вер­ных утвер­жде­ний.

 

1) Через любую точку про­хо­дит не менее одной пря­мой.

2) Если при пе­ре­се­че­нии двух пря­мых тре­тьей пря­мой со­от­вет­ствен­ные углы равны 65°, то эти две пря­мые па­рал­лель­ны.

3) Если при пе­ре­се­че­нии двух пря­мых тре­тьей пря­мой внут­рен­ние на­крест ле­жа­щие углы со­став­ля­ют в сумме 90°, то эти две пря­мые па­рал­лель­ны.

 

Если утвер­жде­ний не­сколь­ко, за­пи­ши­те их но­ме­ра в по­ряд­ке воз­рас­та­ния.

26. Ука­жи­те но­ме­ра вер­ных утвер­жде­ний.

 

1) Если при пе­ре­се­че­нии двух пря­мых тре­тьей пря­мой со­от­вет­ствен­ные углы равны 37°, то эти две пря­мые па­рал­лель­ны.

2) Через любые три точки про­хо­дит не более одной пря­мой.

3) Сумма вер­ти­каль­ных углов равна 180°.

 

Если утвер­жде­ний не­сколь­ко, за­пи­ши­те их но­ме­ра в по­ряд­ке воз­рас­та­ния.

27. Ука­жи­те но­ме­ра вер­ных утвер­жде­ний.

 

1) Пло­щадь тра­пе­ции равна по­ло­ви­не вы­со­ты, умно­жен­ной на раз­ность ос­но­ва­ний.

2) Через любые две точки можно про­ве­сти пря­мую.

3) Через точку, не ле­жа­щую на дан­ной пря­мой, можно про­ве­сти един­ствен­ную пря­мую, пер­пен­ди­ку­ляр­ную дан­ной пря­мой.

 

Если утвер­жде­ний не­сколь­ко, за­пи­ши­те их но­ме­ра в по­ряд­ке воз­рас­та­ния.

28. Ука­жи­те но­ме­ра вер­ных утвер­жде­ний.

 

1) В любую рав­но­бед­рен­ную тра­пе­цию можно впи­сать окруж­ность.

2) Диа­го­наль па­рал­ле­ло­грам­ма делит его углы по­по­лам.

3) Пло­щадь пря­мо­уголь­но­го тре­уголь­ни­ка равна по­ло­ви­не про­из­ве­де­ния его ка­те­тов.

 

Если утвер­жде­ний не­сколь­ко, за­пи­ши­те их но­ме­ра в по­ряд­ке воз­рас­та­ния.

29. Какие из дан­ных утвер­жде­ний верны? За­пи­ши­те их но­ме­ра.

 

1) Во­круг лю­бо­го тре­уголь­ни­ка можно опи­сать окруж­ность.

2) Если в па­рал­ле­ло­грам­ме диа­го­на­ли равны и пер­пен­ди­ку­ляр­ны, то этот па­рал­ле­ло­грамм — квад­рат.

3) Пло­щадь тра­пе­ции равна про­из­ве­де­нию сред­ней линии на вы­со­ту.

 

Если утвер­жде­ний не­сколь­ко, за­пи­ши­те их но­ме­ра в по­ряд­ке воз­рас­та­ния.

30. Какие из дан­ных утвер­жде­ний верны? За­пи­ши­те их но­ме­ра.

 

1) Каж­дая из бис­сек­трис рав­но­бед­рен­но­го тре­уголь­ни­ка яв­ля­ет­ся его ме­ди­а­ной.

2) Диа­го­на­ли пря­мо­уголь­ни­ка равны.

3) У любой тра­пе­ции бо­ко­вые сто­ро­ны равны.

 

Если утвер­жде­ний не­сколь­ко, за­пи­ши­те их но­ме­ра в по­ряд­ке воз­рас­та­ния.

31. Какие из дан­ных утвер­жде­ний верны? За­пи­ши­те их но­ме­ра.

 

1) Если при пе­ре­се­че­нии двух пря­мых тре­тьей пря­мой на­крест ле­жа­щие углы равны, то пря­мые па­рал­лель­ны.

2) Диа­го­наль тра­пе­ции делит её на два рав­ных тре­уголь­ни­ка.

3) Если в ромбе один из углов равен 90° , то такой ромб — квад­рат.

 

Если утвер­жде­ний не­сколь­ко, за­пи­ши­те их но­ме­ра в по­ряд­ке воз­рас­та­ния.

32. Ука­жи­те но­ме­ра вер­ных утвер­жде­ний.

 

1) Смеж­ные углы равны.

2) Любые две пря­мые имеют ровно одну общую точку.

3) Если угол равен 108°, то вер­ти­каль­ный с ним равен 108°.

 

Если утвер­жде­ний не­сколь­ко, за­пи­ши­те их но­ме­ра в по­ряд­ке воз­рас­та­ния.

33. Ука­жи­те но­ме­ра вер­ных утвер­жде­ний.

 

1) Если угол равен 47°, то смеж­ный с ним равен 153°.

2) Если две пря­мые пер­пен­ди­ку­ляр­ны тре­тьей пря­мой, то эти две пря­мые па­рал­лель­ны.

3) Через любую точку про­хо­дит ровно одна пря­мая.

 

Если утвер­жде­ний не­сколь­ко, за­пи­ши­те их но­ме­ра в по­ряд­ке воз­рас­та­ния.

34. Ука­жи­те но­ме­ра вер­ных утвер­жде­ний.

 

1) Любые три пря­мые имеют не более одной общей точки.

2) Если угол равен 120°, то смеж­ный с ним равен 120°.

3) Если рас­сто­я­ние от точки до пря­мой боль­ше 3, то и длина любой на­клон­ной, про­ведённой из дан­ной точки к пря­мой, боль­ше 3.

 

Если утвер­жде­ний не­сколь­ко, за­пи­ши­те их но­ме­ра в по­ряд­ке воз­рас­та­ния.

35. Ука­жи­те но­ме­ра не­вер­ных утвер­жде­ний.

 

1) При пе­ре­се­че­нии двух па­рал­лель­ных пря­мых тре­тьей пря­мой сумма на­крест ле­жа­щих углов равна 180°.

2) Диа­го­на­ли ромба пер­пен­ди­ку­ляр­ны.

3) Цен­тром окруж­но­сти, опи­сан­ной около тре­уголь­ни­ка, яв­ля­ет­ся точка пе­ре­се­че­ния его бис­сек­трис.

 

Если утвер­жде­ний не­сколь­ко, за­пи­ши­те их но­ме­ра в по­ряд­ке воз­рас­та­ния.

36. Какое из сле­ду­ю­щих утвер­жде­ний верно?

 

1) Диа­го­на­ли па­рал­ле­ло­грам­ма равны.

2) Пло­щадь ромба равна про­из­ве­де­нию его сто­ро­ны на вы­со­ту, про­ведённую к этой сто­ро­не.

3) Если две сто­ро­ны и угол од­но­го тре­уголь­ни­ка равны со­от­вет­ствен­но двум сто­ро­нам и углу дру­го­го тре­уголь­ни­ка, то такие тре­уголь­ни­ки равны.

 

Если утвер­жде­ний не­сколь­ко, за­пи­ши­те их но­ме­ра в по­ряд­ке воз­рас­та­ния.

37. Какие из сле­ду­ю­щих утвер­жде­ний верны?

 

1) Длина ги­по­те­ну­зы пря­мо­уголь­но­го тре­уголь­ни­ка мень­ше суммы длин его ка­те­тов.

2) В ту­по­уголь­ном тре­уголь­ни­ке все углы тупые.

3) Сред­няя линия тра­пе­ции равна по­лу­сум­ме её ос­но­ва­ний.

 

Если утвер­жде­ний не­сколь­ко, за­пи­ши­те их но­ме­ра в по­ряд­ке воз­рас­та­ния.

38. Какие из сле­ду­ю­щих утвер­жде­ний верны?

 

1) Если две сто­ро­ны од­но­го тре­уголь­ни­ка со­от­вет­ствен­но равны двум сто­ро­нам дру­го­го тре­уголь­ни­ка, то такие тре­уголь­ни­ки равны.

2) Сред­няя линия тра­пе­ции па­рал­лель­на её ос­но­ва­ни­ям.

3) Длина ги­по­те­ну­зы пря­мо­уголь­но­го тре­уголь­ни­ка мень­ше суммы длин его ка­те­тов.

 

 

Если утвер­жде­ний не­сколь­ко, за­пи­ши­те их но­ме­ра в по­ряд­ке воз­рас­та­ния.

39. Какое из сле­ду­ю­щих утвер­жде­ний верно?

 

1) Точка пе­ре­се­че­ния двух окруж­но­стей рав­но­уда­ле­на от цен­тров этих окруж­но­стей.

2) В па­рал­ле­ло­грам­ме есть два рав­ных угла.

3) Пло­щадь пря­мо­уголь­но­го тре­уголь­ни­ка равна про­из­ве­де­нию длин его ка­те­тов.

 

Если утвер­жде­ний не­сколь­ко, за­пи­ши­те их но­ме­ра в по­ряд­ке воз­рас­та­ния.

40. Какие из сле­ду­ю­щих утвер­жде­ний верны?

 

1) Один из углов тре­уголь­ни­ка все­гда не пре­вы­ша­ет 60 гра­ду­сов.

2) Диа­го­на­ли тра­пе­ции пе­ре­се­ка­ют­ся и де­лят­ся точ­кой пе­ре­се­че­ния по­по­лам.

3) Все диа­мет­ры окруж­но­сти равны между собой.

 

Если утвер­жде­ний не­сколь­ко, за­пи­ши­те их но­ме­ра в по­ряд­ке воз­рас­та­ния.

41. Какие из сле­ду­ю­щих утвер­жде­ний верны?

 

1) Тре­уголь­ни­ка со сто­ро­на­ми 1, 2, 4 не су­ще­ству­ет.

2) Сумма углов лю­бо­го тре­уголь­ни­ка равна 360 гра­ду­сам.

3) Се­ре­дин­ные пер­пен­ди­ку­ля­ры к сто­ро­нам тре­уголь­ни­ка пе­ре­се­ка­ют­ся в цен­тре его опи­сан­ной окруж­но­сти.

 

Если утвер­жде­ний не­сколь­ко, за­пи­ши­те их но­ме­ра в по­ряд­ке воз­рас­та­ния.

42. Какие из сле­ду­ю­щих утвер­жде­ний верны?

 

1) Тре­уголь­ни­ка со сто­ро­на­ми 1, 2, 4 не су­ще­ству­ет.

2) Смеж­ные углы равны.

3) Все диа­мет­ры окруж­но­сти равны между собой.

 

Если утвер­жде­ний не­сколь­ко, за­пи­ши­те их но­ме­ра в по­ряд­ке воз­рас­та­ния.

43. Какое из сле­ду­ю­щих утвер­жде­ний верно?

 

1) Через точку, не ле­жа­щую на дан­ной пря­мой, можно про­ве­сти пря­мую, пер­пен­ди­ку­ляр­ную этой пря­мой.

2) Если сто­ро­ны од­но­го четырёхуголь­ни­ка со­от­вет­ствен­но равны сто­ро­нам дру­го­го четырёхуголь­ни­ка, то такие четырёхуголь­ни­ки равны.

3) Смеж­ные углы равны.

 

Если утвер­жде­ний не­сколь­ко, за­пи­ши­те их но­ме­ра в по­ряд­ке воз­рас­та­ния.

44. Какое из сле­ду­ю­щих утвер­жде­ний верно?

1. Пло­щадь квад­ра­та равна про­из­ве­де­нию двух его смеж­ных сто­рон.

2. Диа­го­наль тра­пе­ции делит её на два рав­ных тре­уголь­ни­ка.

3. Если две сто­ро­ны од­но­го тре­уголь­ни­ка со­от­вет­ствен­но равны двум сто­ро­нам дру­го­го тре­уголь­ни­ка, то такие тре­уголь­ни­ки равны.

45. Какое из сле­ду­ю­щих утвер­жде­ний верно?

1. Все углы ромба равны.

2. Если сто­ро­ны од­но­го четырёхуголь­ни­ка со­от­вет­ствен­но равны сто­ро­нам дру­го­го четырёхуголь­ни­ка, то такие четырёхуголь­ни­ки равны.

3. Через любую точку, ле­жа­щую вне окруж­но­сти, можно про­ве­сти две ка­са­тель­ные к этой окруж­но­сти.

46. Какое из сле­ду­ю­щих утвер­жде­ний верно?

1. Все­гда один из двух смеж­ных углов ост­рый, а дру­гой тупой.

2. Пло­щадь квад­ра­та равна про­из­ве­де­нию двух его смеж­ных сто­рон.

3. Все хорды одной окруж­но­сти равны между собой.

47. Какие из сле­ду­ю­щих утвер­жде­ний верны?

1. Длина ги­по­те­ну­зы пря­мо­уголь­но­го тре­уголь­ни­ка мень­ше суммы длин его ка­те­тов.

2. Любой пря­мо­уголь­ник можно впи­сать в окруж­ность.

3. Через за­дан­ную точку плос­ко­сти можно про­ве­сти толь­ко одну пря­мую.



-80%
Курсы повышения квалификации

Проектная деятельность учащихся

Продолжительность 72 часа
Документ: Удостоверение о повышении квалификации
4000 руб.
800 руб.
Подробнее
Скачать разработку
Сохранить у себя:
Анализ геометрических высказываний (23.91 KB)

Комментарии 0

Чтобы добавить комментарий зарегистрируйтесь или на сайт