Меню
Разработки
Разработки  /  Информатика  /  Разное  /  Логические основы ЭВМ

Логические основы ЭВМ

Материал даёт основное представление о структуре и функциях аппаратной части персонального компьютера и логической организации хранения данных на магнитных дисках.
18.10.2013

Описание разработки

Цель: Дать основное представление о структуре и функциях аппаратной части персонального компьютера и логическая организация хранения данных на магнитных дисках.

Задачи обучения:  Ознакомление с архитектурой современной вычислительной техники.

Ознакомление c внутренними и внешними устройствами компьютеров, основными средствами хранения документов.

Основные вопросы темы:

Представление информации в компьютере.

Булева алгебра и логические схемы компьютера.

Логическая организация хранения данных на магнитных дисках.

Методы обучения и преподавания: семинар

Теоретический блок

Электронные вычислительные машины

Электронные вычислительные машины (ЭВМ) представляют собой устройство, предназначенное для выполнения вычислительных операции по заданной программе.

Современная электронная вычислительная машина – это сложнейший комплекс устройств, восхищающий своим технологическим совершенством и разнообразием физических принципов работы.

Вычислительные машины в зависимости от способа представления информации подразделяются на две большие группы: вычислительные машины непрерывного действия, или аналоговые вычислительные машины (АВМ), и вычислительные машины дискретного действия, или цифровые вычислительные машины (ЦВМ).

В АВМ входные, выходные и промежуточные величины представляются в виде токов или напряжений, значения которых в определенном масштабе соответствуют числом.

Математические действия над числами заменяются в АВМ различными преобразованиями электрических токов или напряжений.

        Подлинный прогресс науки, называемой математической логикой, был достигнут в середине XIX в. Прежде всего благодаря труду английского логика Джорджа Буля «Математический анализ логики». Он перенес на логику законы и правила алгебраических действий,  ввел логические операции, предложил способ записи высказываний в символической форме.

        Современная математизированная формальная логика представляет собой обширную научную область и находит широкое применение как внутри математики (исследование оснований математики), так и вне ее (анализ и синтез автоматических устройств, теоретическая кибернетика, в частности, искусственный интеллект).

Формы мышления. Первые учения о формах и способах рассуждений возникли в странах Древнего Востока (Китай, Индия), но в основе современной логики лежат учения, созданные древнегреческими мыслителями. Основы формальной логики заложил Аристотель, который впервые отделил логические формы мышления (речи)  от его содержания.

Логика- это наука о формах и способах мышления.

Законы логики отражают в сознании человека свойства, связи и отношения объектов окружающего мира. Логика позволяет строить формальные модели окружающего мира, отвлекаясь от содержательной стороны.

Мышление всегда осуществляется в каких-то формах. Основными формами мышления являются понятие, высказывание и умозаключение.

Понятие выделяет существенные признаки объекта, которые отличают его от других объектов. Объекты, объединенные понятием, образуют некоторое множество. Например, понятие «компьютер» объединяет множество электронных устройств, которые предназначены для обработки информации и обладают монитором и клавиатурой. Даже по этому  короткому описанию компьютер трудно спутать с другими объектами, например с механизмами, служащими для перемещения по дорогам и хранящимися в гаражах, которые объединяются понятием «автомобиль».

Понятие- это форма мышления, фиксирующая основные, существенные признаки объекта. Понятие имеет две стороны: содержание и объем. Содержания понятия составляет совокупность существенных признаков объекта. Чтобы раскрыть содержание понятия, следует найти признаки, необходимые и достаточные для выделения данного объекта из множества других объектов. Свое понимание окружающего мира человек формулирует в форме высказываний (суждений, утверждений). Высказывание строится на основе понятий и по форме является повествовательным предложением. Высказывание может быть ложным или истинным. Истинным будет высказывание, в котором связь понятий правильно отражает свойства  и отношение реальных вещей. Ложным высказывание будет в том случае, когда оно не соответствует реальной действительности.

Высказывание – это форма мышления, в которой что-либо утверждается или отрицается о свойствах реальных предметов и отношениях между ними. Высказывание может быть либо ложно, либо истинно.

Умозаключение. Умозаключения позволяют на основе известных фактов, выраженных в форме суждений (высказываний), получать заключение, то есть новое знание. Примером могут быть геометрические доказательства.

Умозаключение – это форма мышления, с помощью которой из одного или нескольких суждений (посылок) может быть получено новое суждение (заключение).

Алгебра логики (раздел высказываний) – раздел математической логики, изучающий строение (форму, структуру) сложных логических высказываний и способы установления их истинности с помощью алгебраических методов.

В алгебре логики над высказываниями можно производить различные операции (подобно тому в алгебре чисел определены операции сложения, деления, возведения в степень над действительными числами).

            Обозначать высказывания будем прописными буквами. Если высказывание А истинное, то будем писать «А=1» и говорить «А истинно». Если высказывание А ложное, то будем писать «А=0» и говорить «А ложно».

Для структурно-функционального описания логических схем, составляющих основу любого дискретного вычислительного устройства, ЭВМ или ВС в целом, используется аппарат булевой алгебры, созданной в 1854 г. Дж. Булем как попытка изучения логики мышления математическими методами. Впервые практическое применение булевой алгебры было сделано К. Шенноном в 1938 г. для анализа и разработки релейных переключательных сетей, результатом чего явилась разработка метода представления любой сети, состоящей из совокупности переключателей и реле, математическими выражениями и принципов их преобразования на основе правил булевой алгебры. Ввиду наличия аналогий между релейными и современными электронными схемами аппарат булевой алгебры нашел широкое применение для анализа, описания и проектирования последних. Использование булевой алгебры позволяет не только более удобно оперировать с булевыми выражениями (представляющими те или иные электронные узлы), чем над схемами или логическими диаграммами, но и на формальном уровне путем эквивалентных преобразований и базовых теорем упрощать их, давая возможность создавать экономически и технически более совершенные электронные устройства любого назначения. Являясь основным средством анализа, разработки и описания структурно-функциональной архитектуры современной ВТ, булева алгебра является обязательной составной частью курса “компьютерной информатики”, а также целого ряда разделов вычислительных наук.

Логические основы ЭВМ

Рассмотрим, как применяется алгебра высказываний при конструировании устройств.

Чтобы конструировать устройство, мы должны знать:

Каким образом следует реализовать логические значения 0 и 1 в виде электрических сигналов на входе и выходе устройства;

Каким образом описать работу этого устройства:

Существует ли алгоритм, позволяющий по известной таблице истинности построить схему устройства;

Из каких элементов должно состоять устройство.

Постановка подобных вопросов и поиск ответов на них привели к построению простейших преобразователей информации, составляющих основу любой вычислительной машины. 

Цифровой сигнал - это сигнал, который может принимать только одно из двух установленных значений.

          Физическая природа сигнала может быть самой различной. Сигналами могут считаться, например, появление на выходе преобразователя напряжения или давления воздуха определенной величины, включение лампы или звонка, нажатие кнопки, срабатывание электромагнитного реле и другие изменения в электрической цепи. При этом обязательно надо, чтобы имелось два существенно различных состояния некоторой физической величины, моделирующие истинность и ложность логических высказываний.

Логическим элементом называется преобразователь, который, получая сигналы об истинности отдельных высказываний, обрабатывает их и в результате выдает значение логического отрицания, логической суммы или логического произведения этих высказываний.

Логические функции и логические элементы

ЦВМ состоит из отдельных элементов, выполняющих элементарные операции, Элемент-это обычно электронная схема. Все элементы ЦВМ разделить на группы в зависимости от значения этих элементов: логические, запоминающие, усилительные и специальные.

Из логических элементов создают операционные схемы, которые обеспечивают арифметические и иные операции. Название «логический элемент» обусловлено тем, что отдельный элемент позволяет осуществить определенную связь или как принято говорить, выполнить отдельную логическую функцию. Рассмотрим некоторые наиболее существенные функции и логические элементы, реализующие их.

Весь материал - смотрите документ.

Содержимое разработки



Тема Логические основы ЭВМ

Цель: Дать основное представление о структуре и функциях аппаратной части персонального компьютера и логическая организация хранения данных на магнитных дисках.


Задачи обучения: Ознакомление с архитектурой современной вычислительной техники.

Ознакомление c внутренними и внешними устройствами компьютеров, основными средствами хранения документов.


Основные вопросы темы:

  1. Представление информации в компьютере.

  2. Булева алгебра и логические схемы компьютера.

  3. Логическая организация хранения данных на магнитных дисках.

Методы обучения и преподавания: семинар


Теоретический блок


Электронные вычислительные машины

Электронные вычислительные машины (ЭВМ) представляют собой устройство, предназначенное для выполнения вычислительных операции по заданной программе.

Современная электронная вычислительная машина – это сложнейший комплекс устройств, восхищающий своим технологическим совершенством и разнообразием физических принципов работы.

Вычислительные машины в зависимости от способа представления информации подразделяются на две большие группы: вычислительные машины непрерывного действия, или аналоговые вычислительные машины (АВМ), и вычислительные машины дискретного действия, или цифровые вычислительные машины (ЦВМ).

В АВМ входные, выходные и промежуточные величины представляются в виде токов или напряжений, значения которых в определенном масштабе соответствуют числом.

Математические действия над числами заменяются в АВМ различными преобразованиями электрических токов или напряжений.

Подлинный прогресс науки, называемой математической логикой, был достигнут в середине XIX в. Прежде всего благодаря труду английского логика Джорджа Буля «Математический анализ логики». Он перенес на логику законы и правила алгебраических действий, ввел логические операции, предложил способ записи высказываний в символической форме.

Современная математизированная формальная логика представляет собой обширную научную область и находит широкое применение как внутри математики (исследование оснований математики), так и вне ее (анализ и синтез автоматических устройств, теоретическая кибернетика, в частности, искусственный интеллект).

Формы мышления. Первые учения о формах и способах рассуждений возникли в странах Древнего Востока (Китай, Индия), но в основе современной логики лежат учения, созданные древнегреческими мыслителями. Основы формальной логики заложил Аристотель, который впервые отделил логические формы мышления (речи) от его содержания.

Логика- это наука о формах и способах мышления.

Законы логики отражают в сознании человека свойства, связи и отношения объектов окружающего мира. Логика позволяет строить формальные модели окружающего мира, отвлекаясь от содержательной стороны.

Мышление всегда осуществляется в каких-то формах. Основными формами мышления являются понятие, высказывание и умозаключение.

Понятие выделяет существенные признаки объекта, которые отличают его от других объектов. Объекты, объединенные понятием, образуют некоторое множество. Например, понятие «компьютер» объединяет множество электронных устройств, которые предназначены для обработки информации и обладают монитором и клавиатурой. Даже по этому короткому описанию компьютер трудно спутать с другими объектами, например с механизмами, служащими для перемещения по дорогам и хранящимися в гаражах, которые объединяются понятием «автомобиль».

Понятие- это форма мышления, фиксирующая основные, существенные признаки объекта. Понятие имеет две стороны: содержание и объем. Содержания понятия составляет совокупность существенных признаков объекта. Чтобы раскрыть содержание понятия, следует найти признаки, необходимые и достаточные для выделения данного объекта из множества других объектов. Свое понимание окружающего мира человек формулирует в форме высказываний (суждений, утверждений). Высказывание строится на основе понятий и по форме является повествовательным предложением. Высказывание может быть ложным или истинным. Истинным будет высказывание, в котором связь понятий правильно отражает свойства и отношение реальных вещей. Ложным высказывание будет в том случае, когда оно не соответствует реальной действительности.

Высказывание – это форма мышления, в которой что-либо утверждается или отрицается о свойствах реальных предметов и отношениях между ними. Высказывание может быть либо ложно, либо истинно.

Умозаключение. Умозаключения позволяют на основе известных фактов, выраженных в форме суждений (высказываний), получать заключение, то есть новое знание. Примером могут быть геометрические доказательства.

Умозаключение – это форма мышления, с помощью которой из одного или нескольких суждений (посылок) может быть получено новое суждение (заключение).

Алгебра логики (раздел высказываний) – раздел математической логики, изучающий строение (форму, структуру) сложных логических высказываний и способы установления их истинности с помощью алгебраических методов.

В алгебре логики над высказываниями можно производить различные операции (подобно тому в алгебре чисел определены операции сложения, деления, возведения в степень над действительными числами).

Обозначать высказывания будем прописными буквами. Если высказывание А истинное, то будем писать «А=1» и говорить «А истинно». Если высказывание А ложное, то будем писать «А=0» и говорить «А ложно».

Для структурно-функционального описания логических схем, составляющих основу любого дискретного вычислительного устройства, ЭВМ или ВС в целом, используется аппарат булевой алгебры, созданной в 1854 г. Дж. Булем как попытка изучения логики мышления математическими методами. Впервые практическое применение булевой алгебры было сделано К. Шенноном в 1938 г. для анализа и разработки релейных переключательных сетей, результатом чего явилась разработка метода представления любой сети, состоящей из совокупности переключателей и реле, математическими выражениями и принципов их преобразования на основе правил булевой алгебры. Ввиду наличия аналогий между релейными и современными электронными схемами аппарат булевой алгебры нашел широкое применение для анализа, описания и проектирования последних. Использование булевой алгебры позволяет не только более удобно оперировать с булевыми выражениями (представляющими те или иные электронные узлы), чем над схемами или логическими диаграммами, но и на формальном уровне путем эквивалентных преобразований и базовых теорем упрощать их, давая возможность создавать экономически и технически более совершенные электронные устройства любого назначения. Являясь основным средством анализа, разработки и описания структурно-функциональной архитектуры современной ВТ, булева алгебра является обязательной составной частью курса “компьютерной информатики”, а также целого ряда разделов вычислительных наук.

Логические основы ЭВМ

Рассмотрим, как применяется алгебра высказываний при конструировании устройств.

Чтобы конструировать устройство, мы должны знать:

  • Каким образом следует реализовать логические значения 0 и 1 в виде электрических сигналов на входе и выходе устройства;

  • Каким образом описать работу этого устройства:

  • Существует ли алгоритм, позволяющий по известной таблице истинности построить схему устройства;

  • Из каких элементов должно состоять устройство.

Постановка подобных вопросов и поиск ответов на них привели к построению простейших преобразователей информации, составляющих основу любой вычислительной машины.

Цифровой сигнал - это сигнал, который может принимать только одно из двух установленных значений.

Физическая природа сигнала может быть самой различной. Сигналами могут считаться, например, появление на выходе преобразователя напряжения или давления воздуха определенной величины, включение лампы или звонка, нажатие кнопки, срабатывание электромагнитного реле и другие изменения в электрической цепи. При этом обязательно надо, чтобы имелось два существенно различных состояния некоторой физической величины, моделирующие истинность и ложность логических высказываний.

Логическим элементом называется преобразователь, который, получая сигналы об истинности отдельных высказываний, обрабатывает их и в результате выдает значение логического отрицания, логической суммы или логического произведения этих высказываний.

Логические функции и логические элементы

ЦВМ состоит из отдельных элементов, выполняющих элементарные операции, Элемент-это обычно электронная схема. Все элементы ЦВМ разделить на группы в зависимости от значения этих элементов: логические, запоминающие, усилительные и специальные.

Из логических элементов создают операционные схемы, которые обеспечивают арифметические и иные операции. Название «логический элемент» обусловлено тем, что отдельный элемент позволяет осуществить определенную связь или как принято говорить, выполнить отдельную логическую функцию. Рассмотрим некоторые наиболее существенные функции и логические элементы, реализующие их.


  1. Логическая функция «И»

Конъюнкцию (объединение) - логическая функция «И». Два (или более) высказывания могут быть объединены в одно сложное.

Конъюнкцию называют логической функцией «И». Обозначим истинное высказывание единицей (1), а ложное нулем (0).

Конъюнкцию двух высказываний обозначим знаком «&» или «^».

Конъюнкцию двух высказываний можно записать по правилам логического умножения:

Графическое изображение:

х1

х2

у

0

0

0

0

1

0

1

0

0

1

1

1


х1 у х1, х2 – вход

у - выход

х2

таблица:

Уравнение «И» элемента:

у=х1^х2

Логический элемент И выполняет действие умножение.


  1. Логическая функция «ИЛИ»

Дизъюнкция (разъединение) – логическая функция «ИЛИ».

Дизъюнкцией назовем сложное высказывание, которое истинно при истинности хотя бы одного из составляющих его высказываний, и ложно, если оба высказывания, которые образуют сложное.

Дизъюнкцию обозначается знаком «+», который читается «ИЛИ». Дизъюнкция двух высказываний может быть записана по правилам логического сложения.

Сложение:

Графическое изображение:

х1

х2

у

0

0

0

0

1

1

1

0

1

1

1

1


х1 х1,х2 –вход

у у- выход

х2

таблица:


Уравнение «ИЛИ» элемента:

у=х1 V х2

Логический элемент ИЛИ выполняет действие сложение.


  1. Логическая функция «НЕ»

Это связь означает отрицание истинности, присущей какому-либо высказыванию. Символически логическая функция НЕ обозначается чертой над символом заданного высказывания: А (читается не «А»).

Логический элемент, реализующий логическую функцию НЕ, называется инвертором.


х

у

0

1

1

0

х у

таблица:




Уравнение «НЕ» элемента:

У=





Давайте начертим из 3-х соединение логических элементов. Это И, ИЛИ, НЕ.


в



а а

а+ в=S

в

в




а

а

ав=Р

в




Логические функции и логические элементы Буль алгебра.


Бульевский (логический) типы. Boolean имеет два значения – TRUE (истинно) и FALSE (ложно). Над значениями допустимы операции сравнения, причем считается, что false (фалс)true(тру) значения булевского типа занимают один байт памяти. В версии Turbo Pascal 7.0 добавлены еще три булевских типа: ButeBool, WordBoll, LongBool для обеспечения совместимости с WINDOWS.

Законы:

1. (а+b)+c=a+(b+c) 2. a+b=b+a 3. a*(b+c)=a*b+b*c

(a*b)*c=a*(b*c) a*b=b*a a+b*c=a*b+a*c

Сочетательный закон: Переместительный закон: Распределительный закон:

а=1, в=0, с=1

(1+0)+1=1+(0+1)

1=1



Логическая организация хранения данных на магнитных дисках

В данном разделе мы познакомимся с логической организацией хранения данных на магнитном диске используемой в DOS.Внешние накопители (диски), используемые для хранения информации, именуются латинскими буквами А, В, С  вслед за которыми пишут двоеточие.      Информация на диске хранится в виде файлов. Файлом -  называется поименованная область памяти на   физическом носителе. В соответствие с характером хранимой информацией  файлу обычно приписывают тип. Задание типа осуществляет либо сам пользователь, либо программа порождающая файл. Для однозначной идентификации файла используется уникальное имя файла и тип. Имя может состоять из 1-8 букв английского алфавита, тип состоит из 1-3 букв английского алфавита. Полное имя файла образуется из двух частей: имени и типа, разделенных знаком «точка».

Примеры имен файлов: command.com; start. bat;read.txt; и т.д.

Файл также имеет размер, указываемый в килобайтах. При создании файла регистрируется его дата и время создания. А также учитываются атрибуты назначенные файлу. Их всего 4 и они налагают некоторые ограничения на действия с файлами. Атрибут только чтение запрещает изменять содержимое файла. Атрибут архивный служит для определения некоторыми программами следует ли архивировать этот файл. Атрибут системный указывает, что файл принадлежит  операционной системе    и необходим для ее нормальной работы, такой файл, ни в коем случае, нельзя удалять.  Файл с атрибутом скрытый  нельзя не увидеть, ни использовать, если неизвестно его имя.

При большом количестве файлов на диске возникает необходимость как-то структурировать и упорядочить  дисковое пространство. Это позволяют сделать каталоги. Каталог – это группа файлов на одном носителе, объединенных по какому-либо критерию. Каталог можно рассматривать как раздел внешней памяти с содержимым, которого можно работать достаточно независимо. Каталог имеет имя и может быть зарегистрирован в другом каталоге. Это означает, что он включен в последний как целое и тогда говорят, что он является подчиненным каталогом (подкаталогом). Так образуется древовидная, иерархическая файловая система. Имя каталога задается по тем же правилам, что и имя файла. На каждом дисковом носителе имеется корневой каталог, в котором зарегистрированы файлы и каталоги первого уровня.

При большом количестве файлов и каталогов уже недостаточно знать только имя файла для быстрого поиска его на диске. Для точной идентификации файла необходимо кроме имени, указать его местоположение  - цепочку подчиненных каталогов. Такая цепочка называется полным путем размещения файла на диске.

Пример.

C:\tutor\babytype\babytype.exe

Имя диска, имена каталогов и имя файла отделяются друг от друга косой чертой.


Литература:

  1. Нортон П. Программно-аппаратная организация IBM PC. –Киев.1997 г.

  2. Бройдо В.Л. Персональные ЭВМ: архитектура и программирование на Ассемблере.

- СПб.: ГИЭА, 1994 г.

  1. Гельман В.Я. Медицинская информатика. СПб. “Пи­тер”. 2001 г.

  2. Симонович С., Евсеев Г., Алексеев А. Специальная информатика, учебное пособие.

Москва: 2002 г.

  1. Герасевич В. Компьютер для врача. СПб. 2002 г.

  2. Симонович С. В. Информатика. Базовый курс. СПб. “Пи­тер”. 2003 г.

  3. Глушаков С.В., Сурядный А.С. Персональный компьютер. М.Фолио. 2004 г.

  4. Макарова Н.В. Информатика 3-издание. Москва 2006 г.

  5. Лыскова В., Ракитина Е. Логика в информатике. Москва 2006 г.

  6. Мукашев К.М., Шадинова К.С., Андаспаева А.А. Основы автоматики и микроэлектроники. Алматы, 2003г. 227стр.


Контроль

Вопросы:

  1. Какие основные блоки входят в состав ПК?

  2. Что такое логический элемент компьютера?

  3. Что такое схемы И, ИЛИ, НЕ?

  4. Что такое триггер?

  5. Что такое сумматор?

  6. Что такое микропроцессор и какие функции он выполняет?

  7. Что располагается на передней панели системного блока?

  8. Что такое тактовая частота процессора и в чем она измеряется?

  9. Что такое разрядность процессора?

  10. Для чего нужен математический сопроцессор?

  11. Что такое микросхема BIOS?

  12. Какие функции выполняет арифметико-логическое устройство?

  13. Какие виды внешних устройств вы знаете?

  14. Что относится к устройствам ввода информации?

  15. Что относится к устройствам вывода информации?

  16. Почему мышь подключается к последовательному порту, а принтер к параллельному?

  17. Какие основные устройства применяются для долговременного хранения данных на ПК?

  18. Назовите виды внешних запоминающих устройств.

  19. Что такое стриммер?

  20. Что такое средства мультимедиа?

  21. Какие устройства относятся к дисковым устройствам?

  22. Для чего используется форматирование дисков?

  23. Что такое интерфейс?

  24. Чем отличается интерфейс IDE-ATA от других интерфейсов?

  25. Как организуется хранение информации на гибком и жестком магнитных дисках?

  26. Как называется устройство ленточного типа?

  27. В качестве запоминающей среды какие материалы используются в магнитных дисках?

  28. Что такое винчестер?

  29. Опишите физические организации хранения данных на магнитных дисках? (стороны диска, цилиндр, дорожки и кластеры)

  30. Какая часть диска называется системной областью диска и что оно включает в себя?

  31. Перечислите выполняемые функции следующих устройств в ПК: монитор, системный блок, клавиатура, принтер.


Тесты: См. Сборник тестовых заданий по «Информатике», тема «Архитектура современной вычислительной техники».


Задачи:

Задача 1

Напишите уравнения и заполните таблицы истинности для логических элементов:

«НЕ», «И», «ИЛИ», «И-НЕ», «ИЛИ-НЕ».


Задача 2

Придумайте любую логическую функцию от трех переменных У(Х1, Х2, Х3):

а) постройте для нее таблицу истинности;

б) постройте соответствующую ей функциональную схему;

в) опишите работу функциональной схемы с помощью таблицы истинности.


Задача 3

a) Постройте соответствующую функциональную схему по заданной структурной формуле:


б) Постройте соответствующую функциональную схему по заданной структурной формуле:

Задача 4

Определите структурную формулу по заданной функциональной схеме:

1





Задача 5

Определитe структурную формулу по заданной функциональной схеме:







Задача 6

Составьте структурную формулу логического устройства по заданной функциональной схеме:







Задача 7

Определите назначение логического устройства по данной таблице истинности.


Х1

Х2

Х3

У

0

0

0

1

0

0

1

1

0

1

0

1

0

1

1

1

1

0

0

1

1

0

1

1

1

1

0

1

1

1

1

0










Задача 8

Определите назначение логического устройства по данной таблице истинности.


Х1

Х2

Х3

У

0

0

0

0

0

0

1

0

0

1

0

0

0

1

1

0

1

0

0

0

1

0

1

0

1

1

0

0

1

1

1

1


Задача 9

Определите назначение логического устройства по данной таблице истинности.


Х1

Х2

Х3

У

0

0

0

0

0

0

1

1

0

1

0

1

0

1

1

1

1

0

0

1

1

0

1

1

1

1

0

1

1

1

1

1


Задача 10

Определите назначение логического устройства по данной таблице истинности.


Х1

Х2

Х3

У

0

0

0

1

0

0

1

0

0

1

0

0

0

1

1

0

1

0

0

0

1

0

1

0

1

1

0

0

1

1

1

0



Задача 11

Объясните принцип логических устройств:

а) Полусумматор

б) Триггер


9


-80%
Курсы повышения квалификации

Современный урок информатики в условиях реализации ФГОС

Продолжительность 108 часов
Документ: Удостоверение о повышении квалификации
5900 руб.
1180 руб.
Подробнее
Скачать разработку
Сохранить у себя:
Логические основы ЭВМ (0.13 MB)

Комментарии 1

Чтобы добавить комментарий зарегистрируйтесь или на сайт

Макарова И С, 09.11.2015 14:42
Грамотно и четко изложен материал