При бесполом размножении быстро увеличивается численность вида, все потомки имеют абсолютно такой же генотип, что и родительская особь. А также не происходит увеличения генетического разнообразия, которое может оказаться очень полезным при изменении условий существования вида.
По этой причине большинство живых организмов на Земле размножаются половым путём.

При половом размножении при слиянии генетической информации родителей увеличивается генетическое разнообразие в потомстве.
У покрытосеменных растений половое размножение связано с цветком.
Важные части цветка — это пестик и тычинка. С их участием происходят сложные процессы полового размножения — опыление и оплодотворение.
Но сперва в будущем цветке начинают образовываться половые клетки.
Женские половые клетки формируются в завязи пестика в семяпочке.
Одна из клеток семяпочки делится. В результате образуются 4 клетки — это женские споры цветкового растения. И только одна из четырёх клеток растёт. В ней содержится большое количество цитоплазмы.
Ядро этой клетки делится, в результате чего образуются 2 дочерних ядра. Ядра расходятся в противоположные стороны и вновь делятся дважды. В результате образуется восьмиядерная клетка. В верхних и нижних её частях образуется по четыре ядра.
От каждой группы к центру перемещается по одному ядру. Вокруг остальных ядер образуется цитоплазма.
Одна из клеток становится женской гаметой — яйцеклеткой.
Ядра, содержащие гаплоидный набор хромосом, которые переместились к центру, сливаются, получается одно диплоидное вторичное ядро. Так образуется зародышевый мешок, который состоит из нескольких клеток. Это и есть гаметофит женского цветкового растения.
Посмотрим, как образуется мужской гаметофит.
Все клетки пыльника вначале однородны. Затем первичные спорогенные клетки начинают делится. В результате деления получаются гаплоидные микроспоры. Они находятся в гнёздах пыльника. Зрелая пыльцевая клетка (микроспора) одноядерна.
Каждая спора делится и образует две клетки: вегетативную и генеративную.
Пыльник созревает, и пыльца высыпается. Она несёт только генетическую информацию. Пылинка попадает на рыльце пестика и происходит опыление.
Оплодотворение у цветковых растений
Под действием вещества, которые находится на рыльце, пыльца прорастает в направлении семяпочки. Из вегетативной клетки пыльцевого зерна образуется пыльцевая трубка.
Генеративная клетка делится, в результате образуются две мужские клетки гаметы ― спермии. А вегетативная клетка исчезает.
Пыльцевая трубка через пыльцевход прорастает в семязачаток. И обе мужские гаметы вливаются в зародышевый мешок.
Одна из гамет перемещается к яйцеклетке и сливается с ней.
Из двух гаплоидных гамет в результате оплодотворения возникает диплоидная зигота. Из неё развивается зародыш семени.
Вторая мужская гамета перемещается к диплоидному вторичному ядру, образуется ядро, которое содержит тройной набор хромосом.
Оплодотворение, при котором одна мужская гамета сливается с яйцеклеткой, а вторая ― с вторичным ядром, называется двойным оплодотворением.
Триплоидное ядро многократно делится. Из получившихся клеток образуется питательная ткань эндосперм.
К завязи притекают питательные вещества, и она постепенно превращается в спелый плод. Околоплодник защищает семена от неблагоприятных воздействий окружающей среды.
В последствии из него вырастет новое растение. А богатые питательными веществами ткани эндосперма обеспечат проросток необходимым питанием.
Процесс двойного оплодотворения открыл в 1898 году русский ботаник, академик Сергей Гаврилович Навашин.
Прежде чем произойдёт оплодотворение, как мы уже говорили, должно произойти опыление.
Различают два основных типа опыления: самоопыление и перекрёстное опыление.
При самоопылении пыльца из тычинки попадает на рыльце пестика того же самого цветка. Так опыляются пшеница, рис, горох и др.
При перекрёстном опылении пальца с тычинок цветка одного растения переносится на рыльца пестиков цветков других растений. В природе перекрёстное опыление происходит значительно чаще, чем самоопыление.
При самоопылении сливаются половые клетки, образовавшиеся на одном растении и, следовательно, имеющие одинаковые наследственные признаки. Вот почему потомство, которое образуется после самоопыления, очень похоже на родительское растение.
А при перекрёстном опылении происходит перекомбинация наследственных признаков отцовского и материнского организмов, и образовавшееся потомство может приобрести новые свойства, которых не было у родителей. Такое потомство более жизнеспособно.
Для того чтобы происходило не самоопыление, а перекрёстное, многие перекрёстноопыляемые растения выработали специальные приспособления, которые затрудняют самоопыление. Например, у кукурузы, опыляющейся перекрёстно, тычинки и пестики находятся на разных цветках.

А у некоторых растений, например, ивы, мужские и женские цветки расположены вообще на разных растениях.
У покрытосеменных растений пыльцу может переносить ветер, вода, насекомые, птицы.
В садоводстве в роли опылителя может выступать и человек. Это искусственное опыление. Оно необходимо для получения новых сортов и повышения урожайности растений.
При искусственном опылении пыльцу переносят чистой, сухой, мягкой кисточкой.
У некоторых растений цветки готовят к опылению заранее, пока они не распустились. Для этого осторожно открывают бутоны и удаляют из них тычинки, для того чтобы не произошло самоопыление.
Затем на бутоны надевают марлевые мешочки, чтобы ветер или насекомые случайно не занесли пыльцу на рыльца. Когда эти бутоны распустятся, на их рыльца наносят приготовленную пыльцу.
Участие насекомых в опылении растений очень велико. Например, только шмели могут опылить клевер и львиный зев. Благодаря своим длинным хоботкам они активно опыляют трубчатые цветки.

Крупная, липкая, шероховатая пыльца цветков хорошо прилипает к мохнатому телу насекомого. Перемазавшись в пыльце, оно перелетает с одного растения на другое и переносит прилипшие к телу пылинки на рыльце пестиков соседних цветков.
Можно визуально определить, какие растения нуждаются в помощи насекомых. Обычно они имеют крупные одиночные цветки или собранные в соцветия, мелкие. Яркая окраска лепестков или листочка простого околоцветника, наличие нектара и аромата — все это признаки насекомоопыляемых растений.
Подсолнечник это перекрёстноопыляемое растение. Его опыляют насекомые.
Очень большую пользу в опылении сельскохозяйственных растений, особенно в садах, приносит медоносная пчела. Это легко проверить, проведя небольшой эксперимент.
Если одну ветвь груши или яблони покрыть лёгким марлевым мешком, т. е. изолировать её от насекомых в тот момент, когда на ней завяжутся цветочные бутоны, то к осени на ней не окажется ни одного плода.
В то же время на соседних ветвях, которые пчёлы посещали, окажется много поспевающих плодов. Поэтому в сады привозят ульи с пчёлами или держат пасеку.
У растений, опыляемых ветром не бывает ярких, крупных, душистых цветков. Они обычно невзрачные и мелкие, часто собраны в соцветия. Пыльники тычинок часто на длинных свисающих нитях. Пыльца мелкая, лёгкая и сухая.
Ветроопыляемые растения чаще растут большими скоплениями, например берёзовые рощи. Как и берёза, ольха образует крупные соцветия-серёжки, предназначенные для опыления ветром. Поэтому берёза, ольха цветут весной, до распускания листьев.






очень доступно и понятно. использовать можно и при повторении темы в 7классе
13.04 Урок для 6г,д,ж,е Вегетативное размножение покрытосеменных.