Меню
Конспекты
Конспекты  /  Алгебра  /  10 класс  /  Алгебра 10 класс ФГОС  /  Радианная мера угла

Радианная мера угла

Урок 21. Алгебра 10 класс ФГОС

В этом видеоуроке мы вспомним, что называют градусной мерой угла. Узнаем, какой угол называют углом в один радиан. Познакомимся с формулой перехода от радианной меры угла к градусной, а также с формулой перехода от градусной меры угла к радианной.

Конспект урока "Радианная мера угла"

Прежде, чем приступить к рассмотрению новой темы, давайте вспомним, что градусом называют величину центрального угла, которому соответствует  часть окружности. Градусная мера угла – это положительное число, которое показывает, сколько раз градус и его части укладываются в измеряемом угле.

А углы можно измерять только в градусах? Сегодня на уроке мы рассмотрим ещё одну единицу измерения углов.

Давайте изобразим окружность с центром в точке  и радиусом . Затем проведём вертикальную прямую, которая касается окружности в точке . Эту прямую мы будем считать числовой осью с началом отсчёта в точке . Положительным направлением на прямой будем считать направление вверх. За единичный отрезок на числовой оси возьмём радиус окружности.

Отметим на прямой несколько точек:  и ,  и ,  и ,  и ,  и .

Теперь представим нашу прямую в виде нерастяжимой нити, которая закреплена на окружности в точке . Будем наматывать нить на окружность. При этом точки на числовой прямой с координатами , , ,  перейдут соответственно в точки окружности , , , . При этом длина дуги  равна , длина дуги  равна , длина дуги  равна , длина дуги  равна .

Получается, что каждой точке прямой ставится в соответствие некоторая точка окружности.

Так, точке прямой с координатой  ставится в соответствие точка . А значит, угол  можем считать единичным? Да, и его мерой мы будем измерять другие углы. Например, угол  следует считать равным , а угол  равным .

А где используют такой способ измерения углов? Такой способ измерения углов широко используется в математике и физике. Говорят, что углы измеряются в радианной мере.

Единичный угол  называют углом в один радиан. Записывают так:  рад.

И напомним, что длина дуги  равна радиусу нашей окружности.

Сейчас давайте рассмотрим окружность радиуса . И отметим на ней дугу , равную длине радиуса окружности, и угол .

И такой угол называется углом в один радиан? Верно.

Запомните! Центральный угол, опирающийся на дугу, длина которой равна радиусу окружности, называется углом в один радиан.

Интересно, а скольким градусам равен угол в один радиан? Давайте найдём градусную меру угла в один радиан. Мы знаем из курса геометрии, что дуге длиной , то есть полуокружности, соответствует центральный угол, равный . Следовательно, дуге окружности длиной  соответствует угол в  раз меньший.

Выше мы назвали такой угол углом в один радиан, а значит, можем записать, что рад . , тогда рад .

Если угол содержит  рад, то рад . Эту формулу называют формулой перехода от радианной меры к градусной.

Давайте с вами найдём градусную меру угла, равного  рад. Для этого воспользуемся формулой перехода от радианной меры к градусной. Подставим  вместо : . Сократим на  и на . И в результате получим .

Можно ли, наоборот, перейти от градусной меры к радианной? Конечно, можно, но такой переход будет чуть сложнее. Так как угол в  равен  рад, то  рад. Тогда  рад. Такую формулу называют формулой перехода от градусной меры к радианной.

Найдём радианную меру угла, равного . Воспользуемся формулой перехода от градусной меры к радианной. Подставим  вместо : . Сократим  и  на . И в результате получим .

Обратите внимание, что при обозначении меры угла в радианах слово «радиан» обычно не пишут: . При этом обозначение градуса в записи меры угла пропускать нельзя.

В следующей таблице представлены углы в градусной и радианной мере, с которыми мы будем встречаться чаще всего.

Отметим, что радианная мера углов позволяет значительно упростить многие формулы в математике, физике, механике. В частности, радианная мера угла удобна для вычисления длины дуги окружности. Так, выше мы выяснили, что угол в  рад стягивает дугу, длина которой равна радиусу , а значит, угол в  рад стягивает дугу длиной: . Если , то эта формула принимает совсем простой вид: , то есть длина дуги равна величине центрального угла, стягиваемого этой дугой.

Сейчас, прежде чем приступить к выполнению заданий, мы докажем, что площадь кругового сектора радиуса , образованного углом в  рад, равна , где .

Докажем это. Известно, что площадь круга вычисляется по формуле: . Площадь полукруга, то есть кругового сектора в  рад: . Тогда площадь сектора в  рад в  раз меньше, то есть . Следовательно, площадь сектора в  рад равна .

Ну а сейчас давайте выполним несколько заданий.

Первое задание. Найдите градусную меру угла, выраженную в радианах: а) ; б) ; в) ; г) ; д) .

Решение.

Второе задание. Найдите радианную меру угла, выраженного в градусах: а) ; б) ; в) ; г) .

Решение.

Следующее задание. Чему равен радиус окружности, если дуге длиной  см соответствует центральный угол в  рад?

Решение.

И ещё одно задание. Дуге кругового сектора соответствует угол, равный  рад. Чему равна площадь сектора, если радиус круга равен  см?

Решение.

Ну а сейчас немного истории.

Впервые радиан как единица измерения был использован английским математиком Роджером Котсом в 1713 году. Он считал, что радиан является наиболее естественной единицей измерения углов. Термин «радиан» впервые появился в печати в 1873 году в экзаменационных билетах Университета Квинса в Белфасте, составленных британским инженером и физиком Джеймсом Томсоном.

В 1960 году XI Генеральной конференцией по мерам и весам радиан был принят в качестве единицы измерения плоских углов в Международной системе единиц (СИ).

0
1123

Комментарии 0

Чтобы добавить комментарий зарегистрируйтесь или на сайт

Вы смотрели