Виды теплопередачи
Цели: ознакомить учащихся с. видами теплообмена; научить их объяснять тепловые явления на основании молекулярно-кинетической теории.
Демонстрации: перемещение тепла по спицам из различных металлов; вращение вертушки над горящей лампой; нагревание раствора медного ^купороса в колбе; взаимодействие источника излучения с теплоприемником!
Ход урока
I. Повторение. Проверка домашнего задания
Перед началом урока можно провести проверку выполнения домашнего задания. При этом один из учеников может ответить на вопросы в конце параграфа, а другой описать итог экспериментальной работы. При этом все неточности должны фиксироваться, причем не столько учителем, сколько учениками, которые принимают активное участие в работе.
II. Изучение нового материала
План изложения нового материала:
Теплопроводность.
Явление конвекции в жидкостях и газах.
Излучение.
Учащиеся уже знают, что внутреннюю энергию можно изменить двумя способами: путем совершения работы и путем теплообмена. Изменение внутренней энергии посредством теплообмена может производиться по-разному. Различают три вида
Способы изменения внутренней энергии
теплообмена:
С
Теплопередача
теплопроводность
конвекция
овершение работы
Лучистый теплообмен
1. Теплообмен посредством теплопроводности.
Теплопроводность - такой тип теплообмена, когда тепло перемещается от более нагретых участков тела к менее нагретым вследствие теплового движения молекул.
Очевидно, что этот перенос энергии требует определенного времени.
Подготовив установку, чуть-чуть модифицированную по сравнению с той, что представлена на с. 1J учебника, ставим опыт, который показывает, что по разным материалам тепло перемещается с разной скоростью (рис. 1).
Для опыта необходимо взять два стержня одинаковой геометрии из меди и железа. На равных расстояниях по длине стержней укрепить кнопки на воске и свободные концы стержней начать нагревать от спиртовки.
Легко заметить, что первыми кнопки начнут падать с медного стержня. То есть тепло Рис. 2
быстрее перемещается по медному стержню.
Можно провести и еще один опыт: на деревянный цилиндр накалывается ряд кнопок, и цилиндр обертывается одним слоем бумаги (рис. 2). При кратковременном помещении цилиндра в пламя горелки происходит неравномерное обугливание бумаги.
Учитель задает вопрос:
- Почему бумага, прилегающая к кнопкам, обуглилась меньше?
Сразу можно акцентировать внимание учащихся на физическом содержании процесса. У пламени горелки молекулы, получив избыток энергии, начинают совершать колебания с большей амплитудой, передавая часть энергии при соударениях с соседними слоями.
Особенность теплопроводности в том, что само вещество не перемещается. Ясно, что чем меньше расстояние между молекулами, тем с большей скоростью идет перенос тепла.
Все кристаллы имеют очень хорошую теплопроводность. И наоборот, те вещества, в которых расстояния между молекулами большие - плохие проводники тепла. Это - различные породы древесины, строительный кирпич, в котором есть поры, заполненные воздухом, различные газы. Плохая теплопроводность у шерсти и меха, так как между ворсинками также много воздуха. Именно наличие меха позволяет отдельным животным переносить зимнюю стужу.
2. Под конвекцией понимают перенос энергии струями жидкости или газа.
Включив лампу накаливания с отражателем и подставив над лампой бумажную вертушку, мы замечаем, что она начинает вращаться (этот опыт, проиллюстрирован в учебнике на с. 14). Объяснение этому факту может быть одно: холодный воздух при нагревании у лампы становится теплым и поднимается вверх. При этом вертушка вращается.
Плотность горячего воздуха или жидкости меньше, чем холодного, поэтому нагрев производят снизу. При этом конвекционные потоки теплой жидкости поднимаются вверх, а на их место опускается холодная жидкость.
На опыте по нагреванию пробирки с водой, на дно которой опущены кристаллики медного купороса, мы замечаем голубые «змейки», которые поднимаются вверх.
Замечено, что жидкость можно нагреть и при нагревании ее сверху, но это - длительный процесс. В данном случае нагрев происходит не за счет конвекции, а за счет теплопроводности.
Система отопления помещений основана именно на перемещении конвекционных потоков теплого и холодного воздуха: постоянное перемешивание воздуха приводит к выравниванию температуры по всему объему помещения.
Очевидно, что главным отличием конвекции от теплопроводности является то, что при конвекции происходит перенос вещества, имеющего большую внутреннюю энергию, а при теплопроводности вещество не переносится.
Холодные и теплые морские и океанские течения - примеры конвекции.
3. Под лучистым теплообменом, или просто излучением, понимают перенос энергии в виде электромагнитных волн. Любое нагретое тело является источником излучения.
Этот вид теплообмена отличается тем, что может происходить и в вакууме. Ведь солнечная энергия доходит до Земли.
Если поставить опыт, описанный и проиллюстрированный в учебнике на с. 89, мы можем убедиться в том, что от излучателя лучистая энергия попадает на теплоприемник, и нагретый в колене манометра воздух увеличивает свое давление. Если темную мембрану теплоприемника заменить на зеркальную, то степень поглощения лучистой энергии станет заметно меньше, что видно по малому перепаду уровней жидкости в коленах манометра.
Темные тела не только лучше поглощают энергию, но и лучше ее отдают в окружающую среду. Два одинаковых тела, нагретые до одной температуры, остывают по-разному, если у них разный цвет поверхности. Способность светлых тел хорошо отражать лучистую энергию используют при строительстве самолетов; крыши высотных зданий в жарких странах также красят в светлые тона.
III. Закрепление изученного материала
С целью закрепления изученного материла можно провести в конце урока краткий опрос-беседу по следующим вопросам:
- Приведите примеры, какие вещества имеют наибольшую и наименьшую теплопроводность?
- Объясните, как и почему происходит перемещение воздуха над нагретой лампой.
Почему конвекция невозможна в твердых телах?
Приведите примеры, показывающие, что тела с темной поверхностью больше нагреваются излучением, чем со светлой.
Домашнее задание
1. § 4-6 учебник
2. Желающие ученики могут подготовить к следующему уроку доклады о применении теплопередачи в природе и технике. Примерными темами докладов могут быть: «Значение видов теплопередачи в авиации и при полетах в космос», «Виды теплопередачи в быту», «Теплопередача в атмосфере», «Учет и использование видов теплопередачи в сельском хозяйстве» и др. -мо 3. Упражнения 1-3.
миг 4. Сборник задач В. И. Лукашика, Е. В. Ивановой, № 956, 960, 970,979. Дополнительный материал Конвекция
С явлением конвекции связаны процессы горообразования. В первом приближении земной шар можно рассматривать как систему, состоящую из трех концентрических слоев. Внутри находится массивное ядро, состоящее в основном из металлов в виде очень плотной жидкой массы. Ядро окружают полужидкая мантия и литосфера. Самый верхний слой литосферы - земная кора.
Литосфера состоит из отдельных плит, которые плавают на поверхности мантии. Вследствие неравномерного разогрева отдельных участков мантии, а также разной плотности горных пород в различных участках мантии в ней возникают конвективные потоки. Они вызывают перемещения литосферных плит, несущих континенты и ложа океанов.
Там, где плиты расходятся, возникают океанские впадины. В других местах, где плиты сталкиваются, образуются горные массивы. Скорость перемещения конвективных потоков в мантин очень мала. Соответственно и плит 2-3 см в год. Однако за геологические эпохи плиты могут перемещаться на сотни и тысячи километров.
Чем же вызвана столь большая теплопроводность металлов, которая в сотни и тысячи раз больше, чем у изоляторов? Дело, очевидно, в структуре металлов, в особенностях металлической связи.
В самом деле, если бы теплопроводность металлов определялась только колебаниями частиц в узлах кристаллической решетки, то она бы не отличалась от теплопроводности изоляторов. Но в металлах есть еще множество свободных электронов -электронный газ, который и обеспечивает их высокую теплопроводность.
В участке металла с высокой температурой часть электронов приобретает большую кинетическую энергию. Так как масса электронов очень мала, то они легко проскакивают десятки промежутков между нонами. Говорят, что у электронов большая длина свободного пробега. Сталкиваясь с нонами, находящимися в более холодных слоях металла, электроны передают им избыток своей энергии, что приводит к повышению температуры этих слоев.
Чем больше длина свободного пробега электронов, тем больше теплопроводность. Именно поэтому у чистых металлов, где в кристаллической решетке дефектов относительно мало, теплопроводность велика. У сплавов, где дефектов решетки гораздо больше, длина свободного пробега меньше, соответственно меньше и теплопроводность.