Муниципальное казенное общеобразовательное учреждение
«Приобская начальная общеобразовательная школа»
Рассмотрено: Согласовано: Утверждаю:
«30» августа 2012г « 1 » сентября 2012г « » сентября 2012 г.
на Педагогическом Совете с Управляющим советом директор школы
Протокол № 1 Протокол № 1 _________Н. В. Кочук
Приказ № - од от .09.2012
РАБОЧАЯ ПРОГРАММА УЧИТЕЛЯ
Пирожниковой Людмилы Викторовны,
первая квалификационная категория.
Математика
2012 – 2016 учебный год
г.п. Приобье
Пояснительная записка
Программа разработана в соответствии с основными положениями ФГОС НОО, с Концепцией духовно – нравственного развития воспитания личности гражданина России, планируемыми результатами НОО, требованиями Примерной основной образовательной программы, созданной на основе ФГОС НОО, с учётом возможностей УМК «Начальная школа XXI века». Данная программа составлена на основе авторской программы под редакцией Н.Ф Виноградовой, ориентирована на работу по учебно – методическому комплекту:
Рудницкая В.Н. программа четырёхлетней начальной школы по математике: проект «Начальная школа XXI века»/В.Н.Рудницкая. – М.: Вентана – Граф, 2011.
Рудницкая В.Н. Математика: 1 класс: учебник для учащихся общеобразовательных учреждений: в 2 ч. Ч.1/В.Н.Рудницкая, Е.Э.Кочурова, О.А.Рыдзе. – М.: Вентана – Граф, 2011.
Рудницкая В.Н. Математика: 1 класс: учебник для учащихся общеобразовательных учреждений: в 2 ч. Ч.2/В.Н.Рудницкая, Е.Э.Кочурова, О.А.Рыдзе. – М.: Вентана – Граф, 2011.
Кочурова Е.Э. Я учусь считать. 1 класс: рабочая тетрадь для учащихся общеобразовательных учреждений/Е.Э.Кочурова. – М.: Вентана – Граф, 2011.
Рудницкая В.Н. Математика. 1 класс: рабочая тетрадь №1,2,3 для учащихся общеобразовательных учреждений/ В.Н. Рудницкая. – М.: Вентана – Граф, 2011.
Рудницкая В.Н. Математика. 1 класс: дидактические материалы в 2 частях/ В.Н. Рудницкая. – М.: Вентана – Граф, 2011.
Рудницкая В.Н. Математика. 1 класс: методика обучения/ В.Н. Рудницкая, Е.Э.Кочурова, О.А.Рыдзе. – М.: Вентана – Граф, 2011.
Рудницкая В.Н. Математика в начальной школе. Устные вычисления: методическое пособие/ В.Н. Рудницкая, Т.В.Юдачева. – М.: Вентана – Граф, 2011.
Рудницкая В.Н. Математика в начальной школе. Проверочные и контрольные работы/ В.Н. Рудницкая, Т.В.Юдачева. – М.: Вентана – Граф, 2011.
Математика как учебный предмет вносит заметный вклад в реализацию важнейших целей и задач начального общего образования младших школьников. Овладение учащимися начальных классов основами математического языка для описания разнообразных предметов и явлений окружающего мира, усвоение общего приёма решения задач как универсального действия, умение выстраивать логические цепочки рассуждений, алгоритмы выполняемых действий, использование измерительных и вычислительных умений и навыков создают необходимую базу для успешной организации процесса обучения учащихся в начальной школе.
Цели и задачи курса
Обучение математике в начальной школе направлено на достижение следующих целей:
- обеспечение интеллектуального развития младших школьников: формирование основ логико-математического мышления, пространственного воображения, овладение учащимися математической речью для описания математических объектов и процессов окружающего мира в количественном и пространственном отношениях, для обоснования получаемых результатов решения учебных задач;
- предоставление младшим школьникам основ начальных математических знаний и формирование соответствующих умений: решать учебные и практические задачи; вести поиск информации (фактов, сходств, различий, закономерностей, оснований для упорядочивания и классификации математических объектов); измерять наиболее распространенные в практике величины;
- умение применять алгоритмы арифметических действий для вычислений; узнавать в окружающих предметах знакомые геометрические фигуры, выполнять несложные геометрические построения;
- реализация воспитательного аспекта обучения: воспитание потребности узнавать новое, расширять свои знания, проявлять интерес к занятиям математикой, стремиться использовать математические знания и умения при изучении других школьных предметов и в повседневной жизни, приобрести привычку доводить начатую работу до конца, получать удовлетворение от правильно и хорошо выполненной работы, уметь
обнаруживать и оценивать красоту и изящество математических методов,
решений, образов.
Важнейшими задачами обучения являются создание благоприятных условий для полноценного математического развития каждого ученика на уровне, соответствующем его возрастным особенностям и возможностям, и обеспечение необходимой и достаточной математической подготовки для дальнейшего успешного обучения в основной школе.
Общая характеристика учебного предмета
Содержание обучения математике в начальной школе направлено на формирование у учащихся математических представлений, умений и навыков, которые обеспечат успешное овладение математикой в основной школе. Учащиеся изучают четыре арифметических действия, овладевают алгоритмами устных и письменных вычислений, учатся вычислять значения числовых выражений, решать текстовые задачи. У детей формируются пространственные и геометрические представления. Весь программный материал представляется концентрически, что позволяет постепенно углублять умения и навыки, формировать осознанные способы математической деятельности.
Характерными особенностями содержания математики являются: наличие содержания, обеспечивающего формирование общих учебных умений, навыков и способов деятельности; возможность осуществлять межпредметные связи с другими учебными предметами начальной школы. Примерная программа определяет также необходимый минимум практических работ.
Место предмета в базисном учебном плане
В Федеральном базисном учебном плане на изучение математики в каждом классе начальной школы отводится 4 часа в неделю, всего – 540 часов. Основное содержание обучения в примерной программе представлено крупными блоками. Такое построение программы позволяет создавать различные модели курса математики, по-разному структурировать содержание учебников, распределять разными способами учебный материал и время для его изучения. Предусмотрен резерв свободного учебного времени – 10 % от общего объема учебных часов, то есть 54 учебных часа на 4 учебных года. Этот резерв может быть использован по своему усмотрению разработчиками программ для авторского наполнения указанных содержательных линий.
Результаты изучения курса
Личностными результатами обучения учащихся являются:
- самостоятельность мышления; умение устанавливать, с какими учебными задачами ученик может самостоятельно успешно справиться;
- готовность и способность к саморазвитию;
- сформированность мотивации к обучению;
- способность характеризовать и оценивать собственные математические знания и умения;
- заинтересованность в расширении и углублении получаемых математических знаний;
- готовность использовать получаемую математическую подготовку в учебной деятельности и при решении практических задач, возникающих в повседневной жизни;
- способность преодолевать трудности, доводить начатую работу до ее завершения;
- способность к самоорганизованности;
- высказывать собственные суждения и давать им обоснование;
- владение коммуникативными умениями с целью реализации возможностей успешного сотрудничества с учителем и учащимися класса (при групповой работе, работе в парах, в коллективном обсуждении математических проблем).
Метапредметными результатами обучения являются:
- владение основными методами познания окружающего мира (наблюдение, сравнение, анализ, синтез, обобщение, моделирование);
- понимание и принятие учебной задачи, поиск и нахождение способов ее решения;
- планирование, контроль и оценка учебных действий; определение наиболее эффективного способа достижения результата;
- выполнение учебных действий в разных формах (практические работы, работа с моделями и др.);
- создание моделей изучаемых объектов с использованием знаково-символических средств;
- понимание причины неуспешной учебной деятельности и способность конструктивно действовать в условиях неуспеха;
- адекватное оценивание результатов своей деятельности;
- активное использование математической речи для решения разнообразных коммуникативных задач;
- готовность слушать собеседника, вести диалог;
- умение работать в информационной среде.
Предметными результатами являются:
- овладение основами логического и алгоритмического мышления, пространственного воображения и математической речи;
- умение применять полученные математические знания для решения учебно-познавательных и учебно-практических задач, а также использовать эти знания для описания и объяснения различных процессов и явлений окружающего мира, оценки их количественных и пространственных отношений;
- овладение устными и письменными алгоритмами выполнения арифметических действий с целыми неотрицательными числами, умениями вычислять значения числовых выражений, решать текстовые задачи, измерять наиболее распространенные в практике величины, распознавать и изображать простейшие геометрические фигуры;
- умение работать в информационном поле (таблицы, схемы, диаграммы, графики, последовательности, цепочки, совокупности); представлять, анализировать и интерпретировать данные.
В результате изучения математики ученик
Научится:
- читать, записывать и сравнивать числа в пределах 1 000 000;
- представлять многозначное число в виде суммы разрядных слагаемых;
- пользоваться изученной математической терминологией;
- выполнять устно арифметические действия над числами в пределах сотни и с большими числами в случаях, легко сводимых к действиям в пределах ста;
- выполнять письменные вычисления (сложение и вычитание многозначных чисел, умножение и деление многозначных чисел на однозначное и двузначное число);
- выполнять вычисления с нулем;
- вычислять значение числового выражения, содержащего 2–3 действия (со скобками и без них);
- проверять правильность выполненных вычислений;
- решать текстовые задачи арифметическим способом (не более двух действий);
- чертить с помощью линейки отрезок заданной длины, измерять длину заданного отрезка;
- распознавать изученные геометрические фигуры и изображать их на бумаге с разлиновкой в клетку (с помощью линейки и от руки);
- вычислять периметр и площадь прямоугольника (квадрата);
- сравнивать величины по их числовым значениям; выражать данные величины в различных единицах;
Получит возможность научиться:
использовать приобретенные знания и умения в практической деятельности и повседневной жизни:
- для ориентировки в окружающем пространстве (планирование маршрута, выбор пути передвижения и др.);
- сравнения и упорядочения объектов по разным признакам: длине, площади, массе, вместимости;
- определения времени по часам (в часах и минутах);
- решения задач, связанных с бытовыми жизненными ситуациями (покупка, измерение, взвешивание и др.);
- оценки величины предметов на глаз;
- самостоятельной конструкторской деятельности (с учетом возможностей применения разных геометрических фигур).
Содержание курса
1 класс – 132 часа
Множества предметов. Отношения между предметами
и между множествами предметов*
Сходства и различия предметов. Соотношение размеров предметов (фигур). Понятия: больше, меньше, одинаковые по размерам; длиннее, короче, такой же длины (ширины, высоты).
Соотношения между множествами предметов. Понятия: больше, меньше, столько же, поровну (предметов), больше, меньше (на несколько предметов).
Универсальные учебные действия:
- сравнивать предметы (фигуры) по их форме и размерам;
- распределять данное множество предметов на группы по заданным признакам (выполнять классификацию);
- сопоставлять множества предметов по их численностям (путём составления пар предметов)
Число и счёт
Счёт предметов. Чтение и запись чисел в пределах класса миллиардов.
Классы и разряды натурального числа. Десятичная система записи чисел. Представление многозначного числа в виде суммы разрядных слагаемых.
Сравнение чисел; запись результатов сравнения с использованием знаков , =, .
Римская система записи чисел.
Сведения из истории математики: как появились числа, чем занимается арифметика.
Универсальные учебные действия:
- пересчитывать предметы; выражать результат натуральным числом;
- сравнивать числа;
- упорядочивать данное множество чисел.
Арифметические действия с числами и их свойства
Сложение, вычитание, умножение и деление и их смысл. Запись арифметических действий с использованием знаков +, -, •, : .
Сложение и вычитание (умножение и деление) как взаимно обратные
действия. Названия компонентов арифметических действий (слагаемое, сумма; уменьшаемое, вычитаемое, разность; множитель, произведение; делимое, делитель, частное).
Таблица сложения и соответствующие случаи вычитания.
Таблица умножения и соответствующие случаи деления.
Устные и письменные алгоритмы сложения и вычитания.
Умножение многозначного числа на однозначное, на двузначное и на трехзначное число.
Деление с остатком.
Устные и письменные алгоритмы деления на однозначное, на двузначное и
на трехзначное число.
Способы проверки правильности вычислений (с помощью обратного действия, оценка достоверности, прикидка результата, с использованием микрокалькулятора).
Доля числа (половина, треть, четверть, десятая, сотая, тысячная).
Нахождение одной или нескольких долей числа. Нахождение числа по его доле.
Переместительное и сочетательное свойства сложения и умножения;
распределительное свойство умножения относительно сложения (вычитания); сложение и вычитание с 0; умножение и деление с 0 и 1. Обобщение: записи свойств действий с использованием букв. Использование свойств арифметических действий при выполнении вычислений: перестановка и группировка слагаемых в сумме, множителей в произведении; умножение суммы и разности на число).
Числовое выражение. Правила порядка выполнения действий в числовых выражениях, содержащих от 2 до 6 арифметических действий, со скобками и без скобок. Вычисление значений выражений. Составление выражений в соответствии с заданными условиями.
Выражения и равенства с буквами. Правила вычисления неизвестных компонентов арифметических действий.
Примеры арифметических задач, решаемых составлением равенств,
содержащих букву.
Универсальные учебные действия:
- моделировать ситуацию, иллюстрирующую данное арифметическое действие;
- воспроизводить устные и письменные алгоритмы выполнения четырёх арифметических действий;
- прогнозировать результаты вычислений;
- контролировать свою деятельность: проверять правильность выполнения вычислений изученными способами;
- оценивать правильность предъявленных вычислений;
- сравнивать разные способы вычислений, выбирать из них удобный;
- анализировать структуру числового выражения с целью определения порядка выполнения содержащихся в нём арифметических действий.
Величины
Длина, площадь, периметр, масса, время, скорость, цена, стоимость и их единицы. Соотношения между единицами однородных величин.
Сведения из истории математики: старинные русские меры длины (вершок, аршин, пядь, маховая и косая сажень, морская миля, верста), массы (пуд, фунт, ведро, бочка). История возникновения месяцев года. Вычисление периметра многоугольника, периметра и площади прямоугольника (квадрата). Длина ломаной и её вычисление.
Точные и приближённые значения величины (с недостатком, с избытком).
Измерение длины, массы, времени, площади с указанной точностью. Запись приближенных значений величины с использованием знака ≈ (примеры: АВ ≈ 5 см, t ≈ 3 мин, V ≈ 200 км/ч).
Вычисление одной или нескольких долей значения величины. Вычисление значения величины по известной доле её значения.
Универсальные учебные действия:
- сравнивать значения однородных величин;
- упорядочивать данные значения величины;
- устанавливать зависимость между данными и искомыми величинами при решении разнообразных учебных задач.
Работа с текстовыми задачами
Понятие арифметической задачи. Решение текстовых арифметических задач арифметическим способом.
Работа с текстом задачи: выявление известных и неизвестных величин, составление таблиц, схем, диаграмм и других моделей для представления данных условия задачи.
Планирование хода решения задачи. Запись решения и ответа задачи.
Задачи, содержащие отношения «больше (меньше) на», «больше (меньше) в»; зависимости между величинами, характеризующими процессы купли- продажи, работы, движения тел.
Примеры арифметических задач, решаемых разными способами; задач, имеющих несколько решений, не имеющих решения; задач с недостающими и с лишними данными (не использующимися при решении).
Универсальные учебные действия:
- моделировать содержащиеся в тексте задачи зависимости;
- планировать ход решения задачи;
- анализировать текст задачи с целью выбора необходимых арифметических действий для её решения;
- прогнозировать результат решения;
- контролировать свою деятельность: обнаруживать и устранять ошибки логического характера (в ходе решения) и ошибки вычислительного характера;
- выбирать верное решение задачи из нескольких предъявленных решений;
- наблюдать за изменением решения задачи при изменении её условий.
Геометрические понятия
Форма предмета. Понятия: такой же формы, другой формы. Плоские фигуры: точка, линия, отрезок, ломаная, круг; многоугольники и их виды. Луч и прямая как бесконечные плоские фигуры. Окружность (круг). Изображение плоских фигур с помощью линейки, циркуля и от руки. Угол и его элементы вершина, стороны. Виды углов (прямой, острый, тупой). Классификация треугольников (прямоугольные, остроугольные, тупоугольные). Виды треугольников в зависимости от длин сторон (разносторонние, равносторонние, равнобедренные).
Прямоугольник и его определение. Квадрат как прямоугольник. Свойства противоположных сторон и диагоналей прямоугольника. Оси симметрии прямоугольника (квадрата).
Пространственные фигуры: прямоугольный параллелепипед (куб), пирамида, цилиндр, конус, шар. Их распознавание на чертежах и на моделях.
Взаимное расположение фигур на плоскости (отрезков, лучей, прямых, окружностей) в различных комбинациях. Общие элементы фигур. Осевая симметрия. Пары симметричных точек, отрезков, многоугольников. Примеры фигур, имеющих одну или несколько осей симметрии. Построение симметричных фигур на клетчатой бумаге.
Универсальные учебные действия:
- ориентироваться на плоскости и в пространстве (в том числе различать направления движения);
- различать геометрические фигуры;
- характеризовать взаимное расположение фигур на плоскости;
- конструировать указанную фигуру из частей;
- классифицировать треугольники;
- распознавать пространственные фигуры (прямоугольный параллелепипед, пирамида, цилиндр, конус, шар) на чертежах и на моделях.
Логико-математическая подготовка
Понятия: каждый, какой-нибудь, один из, любой, все, не все; все, кроме.
Классификация множества предметов по заданному признаку. Определение оснований классификации.
Понятие о высказывании. Примеры истинных и ложных высказываний.
Числовые равенства и неравенства как примеры истинных и ложных высказываний.
Составные высказывания, образованные из двух простых высказываний с помощью логических связок «и»,«или»,«если, то»,«неверно, что» и их истинность. Анализ структуры составного высказывания: выделение в нем простых высказываний. Образование составного высказывания из двух простых высказываний.
Простейшие доказательства истинности или ложности данных утверждений. Приведение гримеров, подтверждающих или опровергающих данное утверждение.
Решение несложных комбинаторных задач и других задач логического характера (в том числе задач, решение которых связано с необходимостью перебора возможных вариантов.)
Универсальные учебные действия:
- определять истинность несложных утверждений;
- приводить примеры, подтверждающие или опровергающие данное утверждение;
- конструировать алгоритм решения логической задачи;
- делать выводы на основе анализа предъявленного банка данных;
- конструировать составные высказывания из двух простых высказываний с помощью логических слов-связок и определять их истинность;
- анализировать структуру предъявленного составного высказывания; выделять в нём составляющие его высказывания и делать выводы об истинности или ложности составного высказывания;
- актуализировать свои знания для проведения простейших математических доказательств (в том числе с опорой на изученные определения, законы арифметических действий, свойства геометрических фигур).
Работа с информацией
Сбор и представление информации, связанной со счетом, с измерением; фиксирование и анализ полученной информации.
Таблица; строки и столбцы таблицы. Чтение и заполнение таблиц заданной информацией. Перевод информации из текстовой формы в табличную.
Составление таблиц.
Графы отношений. Использование графов для решения учебных задач.
Числовой луч. Координата точки. Обозначение вида А (5).
Координатный угол. Оси координат. Обозначение вида А (2,3).
Простейшие графики. Считывание информации.
Столбчатые диаграммы. Сравнение данных, представленных на диаграммах.
Конечные последовательности (цепочки) предметов, чисел, фигур, составленные по определенным правилам. Определение правила составления последовательности.
Универсальные учебные действия:
- собирать требуемую информацию из указанных источников; фиксировать результаты разными способами;
- сравнивать и обобщать информацию, представленную в таблицах, на графиках и диаграммах;
- переводить информацию из текстовой формы в табличную.
Планируемые результаты обучения
1. К концу обучения в первом классе ученик научится:
называть:
— предмет, расположенный левее (правее), выше (ниже) данного предмета, над (под, за) данным предметом, между двумя предметами;
— натуральные числа от 1 до 20 в прямом и в обратном порядке, следующее (предыдущее) при счете число;
— число, большее (меньшее) данного числа (на несколько единиц);
— геометрическую фигуру (точку, отрезок, треугольник, квадрат, пятиугольник, куб, шар);
различать:
— число и цифру;
— знаки арифметических действий;
— круг и шар, квадрат и куб;
— многоугольники по числу сторон (углов);
— направления движения (слева направо, справа налево, сверху вниз, снизу вверх);
читать:
— числа в пределах 20, записанные цифрами;
— записи вида 3 + 2 = 5, 6 – 4 = 2, 5 2 = 10, 9 : 3 = 3.
сравнивать
— предметы с целью выявления в них сходства и различий;
— предметы по размерам (больше, меньше);
— два числа (больше, меньше, больше на, меньше на);
— данные значения длины;
— отрезки по длине;
воспроизводить:
— результаты табличного сложения любых однозначных чисел;
— результаты табличного вычитания однозначных чисел;
— способ решения задачи в вопросно-ответной форме.
распознавать:
— геометрические фигуры;
моделировать:
— отношения «больше», «меньше», «больше на», «меньше на» с использованием фишек, геометрических схем (графов) с цветными стрелками;
— ситуации, иллюстрирующие арифметические действия (сложение, вычитание, умножение, деление);
— ситуацию, описанную текстом арифметической задачи, с помощью фишек или схематического рисунка;
характеризовать:
— расположение предметов на плоскости и в пространстве;
— расположение чисел на шкале линейки (левее, правее, между);
— результаты сравнения чисел словами «больше» или «меньше»;
— предъявленную геометрическую фигуру (форма, размеры);
— расположение предметов или числовых данных в таблице (верхняя, средняя, нижняя) строка, левый (правый, средний) столбец;
анализировать:
— текст арифметической задачи: выделять условие и вопрос, данные и искомые числа (величины);
— предложенные варианты решения задачи с целью выбора верного или
оптимального решения;
классифицировать:
— распределять элементы множеств на группы по заданному признаку;
упорядочивать:
— предметы (по высоте, длине, ширине);
— отрезки в соответствии с их длинами;
— числа (в порядке увеличения или уменьшения);
конструировать:
— алгоритм решения задачи;
— несложные задачи с заданной сюжетной ситуацией (по рисунку, схеме);
контролировать:
— свою деятельность (обнаруживать и исправлять допущенные ошибки);
оценивать:
— расстояние между точками, длину предмета или отрезка (на глаз);
— предъявленное готовое решение учебной задачи (верно, неверно).
решать учебные и практические задачи:
— пересчитывать предметы, выражать числами получаемые результаты;
— записывать цифрами числа от 1 до 20, число нуль;
— решать простые текстовые арифметические задачи (в одно действие);
— измерять длину отрезка с помощью линейки;
— изображать отрезок заданной длины;
— отмечать на бумаге точку, проводить линию по линейке;
— выполнять вычисления (в том числе вычислять значения выражений, содержащих скобки);
— ориентироваться в таблице: выбирать необходимую для решения задачи информацию.
2.К концу обучения в первом классе ученик может научиться:
сравнивать:
— разные приёмы вычислений с целью выявления наиболее удобного приема;
воспроизводить:
— способ решения арифметической задачи или любой другой учебной
задачи в виде связного устного рассказа;
классифицировать:
— определять основание классификации;
обосновывать:
— приемы вычислений на основе использования свойств арифметических действий;
контролировать деятельность:
— осуществлять взаимопроверку выполненного задания при работе в парах;
решать учебные и практические задачи:
— преобразовывать текст задачи в соответствии с предложенными условиями;
— использовать изученные свойства арифметических действий при вычислениях;
— выделять на сложном рисунке фигуру указанной формы (отрезок, треугольник и др.), пересчитывать число таких фигур;
— составлять фигуры из частей;
— разбивать данную фигуру на части в соответствии с заданными требованиями;
— изображать на бумаге треугольник с помощью линейки;
— находить и показывать на рисунках пары симметричных относительно осей симметрии точек и других фигур (их частей);
— определять, имеет ли данная фигура ось симметрии и число осей,
— представлять заданную информацию в виде таблицы;
— выбирать из математического текста необходимую информацию для ответа на поставленный вопрос.
2 класс – 136 часов.
Сложение и вычитание в пределах 100. Чтение и запись двузначных чисел цифрами. Сведения из истории математики. Происхождение римских цифр. Луч, его изображение и обозначение. Принадлежность точки лучу. Взаимное расположение на плоскости лучей и отрезков. Числовой луч. Координата точки. Сравнение чисел с использованием числового луча.
Единица длины «метр» и ее обозначение (м). Соотношения между единицами длины (1 м = 100 см, 1 дм = 10 см, 1 м = 10 дм). Сведения из истории математики. Старинные русские меры длины (вершок, аршин, пядь, маховая и косая сажень) и массы (пуд).
Практические способы сложения и вычитания двузначных чисел. Поразрядное сложение и вычитание двузначных чисел, в том числе с использованием микрокалькулятора при вычислениях.
Многоугольник и его элементы: вершины, стороны, углы. Периметр многоугольника и его вычисление. Окружность: радиус и центр окружности. Построение окружности с помощью циркуля. Взаимное расположение фигур на плоскости.
Таблица умножения однозначных чисел. Табличное умножение чисел и соответствующие случаи деления. Практические способы нахождения площадей фигур. Единицы площади: квадратный дециметр, квадратный сантиметр, квадратный метр и их обозначения.
Доля числа. Нахождение одной или нескольких долей данного числа и числа по нескольким его долям.
Умножение и деление с 0 и 1. Свойство умножения: умножать числа можно в любом порядке.
Отношения «меньше в» и «больше в». Решение задач на увеличение и уменьшение числа в несколько раз.
Выражения. Название компонентов действий сложения, вычитания, умножения и деления. Числовое выражение и его значение. Числовые выражения, содержащие скобки. Нахождение значений числовых выражений. Угол. Прямой и непрямой углы. Прямоугольник (квадрат).
Свойства противоположных сторон и диагоналей прямоугольника. Правило вычисления площади прямоугольника (квадрата).
Понятие о переменной. Выражение, содержащее переменную. Нахождение значений выражения с переменной при заданном наборе ее числовых значений. Запись решения задач, содержащих переменную.
Практические работы. Определение вида угла (прямой, непрямой), нахождение прямоугольника среди данных четырехугольников с помощью модели прямого угла.
1. К концу обучения во втором классе ученик научится:
называть:
— натуральные числа от 20 до 100 в прямом и в обратном порядке,
следующее (предыдущее) при счете число;
— число, большее или меньшее данного числа в несколько раз;
— единицы длины, площади;
— одну или несколько долей данного числа и числа по его доле;
— компоненты арифметических действий (слагаемое, сумма, уменьшаемое, вычитаемое, разность, множитель, произведение, делимое, делитель, частное);
— геометрическую фигуру (многоугольник, угол, прямоугольник, квадрат, окружность);
сравнивать:
— числа в пределах 100;
— числа в кратном отношении (во сколько раз одно число больше или
меньше другого);
— длины отрезков;
различать:
— отношения «больше в» и «больше на», «меньше в» и «меньше на»;
— компоненты арифметических действий;
— числовое выражение и его значение;
— российские монеты, купюры разных достоинств;
— прямые и непрямые углы;
— периметр и площадь прямоугольника;
— окружность и круг;
читать:
— числа в пределах 100, записанные цифрами;
— записи вида 5 · 2 = 10, 12 : 4 = 3;
воспроизводить:
— результаты табличных случаев умножения однозначных чисел и
соответствующих случаев деления;
— соотношения между единицами длины: 1 м = 100 см, 1 м = 10 дм.
приводить примеры:
— однозначных и двузначных чисел;
— числовых выражений;
моделировать:
— десятичный состав двузначного числа;
— алгоритмы сложения и вычитания двузначных чисел;
— ситуацию, представленную в тексте арифметической задачи, в виде
схемы, рисунка;
распознавать:
— геометрические фигуры (многоугольники, окружность, прямоугольник,
угол);
упорядочивать:
— числа в пределах 100 в порядке увеличения или уменьшения;
характеризовать:
— числовое выражение (название, как составлено);
— многоугольник (название, число углов, сторон, вершин);
анализировать:
— текст учебной задачи с целью поиска алгоритма ее решения;
— готовые решения задач с целью выбора верного решения, рационального способа решения;
классифицировать:
— углы (прямые, непрямые);
— числа в пределах 100 (однозначные, двузначные);
конструировать:
— тексты несложных арифметических задач;
— алгоритм решения составной арифметической задачи;
контролировать:
— свою деятельность (находить и исправлять ошибки);
оценивать:
— готовое решение учебной задачи (верно, неверно);
решать учебные и практические задачи:
— записывать цифрами двузначные числа;
— решать составные арифметические задачи в два действия в различных комбинациях;
— вычислять сумму и разность чисел в пределах 100, используя изученные
устные и письменные приемы вычислений;
— вычислять значения простых и составных числовых выражений;
— вычислять периметр и площадь прямоугольника (квадрата);
— строить окружность с помощью циркуля;
— выбирать из таблицы необходимую информацию для решения учебной
задачи;
— заполнять таблицы, имея некоторый банк данных.
2.К концу обучения во втором классе ученик может научиться:
формулировать:
— свойства умножения и деления;
— определения прямоугольника и квадрата;
— свойства прямоугольника (квадрата);
называть:
— вершины и стороны угла, обозначенные латинскими буквами;
— элементы многоугольника (вершины, стороны, углы);
— центр и радиус окружности;
— координаты точек, отмеченных на числовом луче;
читать:
— обозначения луча, угла, многоугольника;
различать:
— луч и отрезок
характеризовать:
— расположение чисел на числовом луче;
— взаимное расположение фигур на плоскости (пересекаются, не пересекаются, имеют общую точку (общие точки);
решать учебные и практические задачи:
— выбирать единицу длины при выполнении измерений;
— обосновывать выбор арифметических действий для решения задач;
— указывать на рисунке все оси симметрии прямоугольника (квадрата),
— изображать на бумаге многоугольник с помощью линейки или от руки;
— составлять несложные числовые выражения;
— выполнять несложные устные вычисления в пределах 100.
3 класс – 136 часов
Элементы арифметики
Тысяча
Чтение и запись цифрами чисел от 100 до 1000.
Сведения из истории математики: как появились числа; чем занимается арифметика.
Сравнение чисел. Запись результатов сравнения с помощью знаков .
Сложение и вычитание в пределах 1000.
Устные и письменные приемы сложения и вычитания.
Сочетательное свойство сложения и умножения.
Упрощение выражений (освобождение выражений от «лишних» скобок).
Порядок выполнения действий в выражениях, записанных без скобок, содержащих действия: а) только одной ступени; б) разных ступеней. Правило порядка выполнения действий в выражениях, содержащих одну или несколько пар скобок.
Числовые равенства и неравенства.
Чтение и запись числовых равенств и неравенств. Свойства числовых равенств.
Решение составных арифметических задач в три действия.
Умножение и деление на однозначное число в пределах 1000.
Умножение суммы на число (распределительное свойство умножения относительно сложения).
Умножение и деление на 10, 100.
Умножение числа, запись которого оканчивается нулем, на однозначное число. Умножение двух- и трехзначного числа на однозначное число.
Нахождение однозначного частного.
Деление с остатком.
Деление на однозначное число.
Нахождение неизвестных компонентов арифметических действий.
Практическая работа. Выполнение деления с остатком с помощью фишек.
Умножение и деление на двузначное число в пределах 1000.
Умножение вида 23 · 40.
Умножение и деление на двузначное число.
Величины
Единицы длины километр и миллиметр, и их обозначения: км, мм.
Соотношения между единицами длины: 1км = 1000м, 1см = 10мм.
Вычисление длины ломаной.
Масса и ее единицы: килограмм, грамм. Обозначения: кг, г. Соотношения: 1кг = 1000г.
Вместимость и ее единица литр. Обозначение: л.
Сведения из истории математики: старинные русские единицы величин: морская миля, верста, пуд, фунт, ведро, бочка.
Время и его единицы: час, минута, секунда; сутки, неделя, год, век. Обозначения: ч, мин, с. Соотношения между единицами времени: 1 ч = 60 мин, 1 мин = 60 с, 1 сутки = 24 ч, 1 век =100 лет, 1 год =12 месяцев.
Сведения из истории математики: история возникновения месяцев года.
Решение арифметических задач, содержащие разнообразные зависимости между величинами.
Практические работы. Измерение длины, ширины и высоты предметов с использованием разных единиц длины. Снятие мерок с фигуры человека с помощью портновского метра. Взвешивание предметов на чашечных весах. Сравнение вместимостей двух сосудов с помощью данной мерки.
Отмеривание с помощью литровой банки данного количества воды.
Геометрические понятия
Ломаная линия. Вершины и звенья ломаной. Замкнутая и незамкнутая ломаная. Построение ломаной.
Деление окружности на 6 одинаковых частей с помощью циркуля.
Прямая. Принадлежность точки прямой. Проведение прямой через одну и через две точки.
Взаимное расположение на плоскости отрезков, лучей, прямых.
Практические работы. Способы деления круга (окружности) на 2, 4, 8 равных частей с помощью перегибания круга по его осям симметрии. Построение симметричных прямых на клетчатой бумаге. Проверка с помощью угольника, какие из данных прямых пересекаются под прямым углом.
К концу обучения в 3 классе учащиеся должны:
Называть:
Единицы длины, массы, вместимости, времени, скорости, площади;
Фигуру, изображенную на рисунке (ломаная, прямая).
Различать:
Числовые равенства и неравенства;
Знаки ;
Уравнения и неравенства с одной переменной;
Прямую, луч, отрезок;
Параллельные и перпендикулярные прямые;
Замкнутую и незамкнутую ломаные.
Сравнивать трехзначные числа.
Воспроизводить по памяти соотношения между единицами длины: 1 км = 1000м, 1 см = 10мм; массы: 1 кг=1000г; времени: 1ч= 60минут, 1 мин= 60сек, 1 сут.= 24 ч, 1 век= 100 лет, 1 год = 12 мес.
Приводить примеры:
Устанавливать связи и зависимости:
Между компонентами и результатами арифметических действий (суммой и слагаемыми, произведением и множителями и др.)
Между известными и неизвестными величинами при решении арифметических задач.
Использовать модели (моделировать учебную ситуацию):
Решать учебные и практические задачи:
Выполнять несложные устные вычисления в пределах 1000;
Выполнять письменно сложение, вычитание, умножение и деление на однозначное и на двузначное число в случаях, когда результат действия не превышает 1000;
Решать арифметические текстовые задачи в 3 действия (в различных комбинациях);
Изображать прямую с помощью линейки, обозначать ее буквами и вычислять длину ломаной;
Строить прямоугольник (квадрат) с помощью угольника и линейки; прямую, параллельную (перпендикулярную) данной прямой, с помощью угольника и линейки; точку, симметричную данной, с помощью линейки и угольника;
Делить окружность на 6 равных частей с помощью линейки и угольника;
Применять правила порядка выполнения действий в выражениях со скобками и без них;
Применять зависимости между величинами (скоростью, путем и временем прямолинейного равномерного движения; ценой, количеством и стоимостью товара) при решении разнообразных математических задач
4 класс - 136 часов
Множество целых неотрицательных чисел
Многозначное число; классы и разряды многозначного числа. Десятичная система записи чисел. Чтение и запись многозначных чисел.
Сведения из истории математики.
Римские цифры: I, V, X, L, С, D, М, запись даты римскими цифрами. Примеры вычислений с числами, записанными римскими цифрами.
Свойства арифметических действий.
Арифметические действия с многозначными числами.
Устные и письменные приемы сложения и вычитания многозначных чисел.
Умножение и деление на однозначное число, на двузначное и на трехзначное число. Простейшие устные вычисления.
Решение арифметических задач разных видов, требующих выполнения 3—4 вычислений (в том числе содержащих зависимость между объемом работы, временем и производительностью труда).
Величины и их измерение.
Единицы массы: тонна и центнер. Обозначение: т, ц. Соотношение: 1т=10ц, 1т =1000кг, 1ц =100кг.
Скорость равномерного прямолинейного движения и ее единицы. Обозначения: км/ч, м/с, м/мин.
Точные и приближенные значения величины (с недостатком, с избытком). Измерения длины, массы, времени, площади с заданной точностью.
Алгебраическая пропедевтика.
Координатный угол. Простейшие графики. Диаграммы. Таблицы.
Равенства с буквой. Нахождение неизвестного числа, обозначенного буквой.
Логические понятия. Высказывания.
Высказывание и его значение (истина, ложь).
Составление высказываний и нахождение их значений.
Решение задач на перебор вариантов.
Геометрические понятия.
Многогранник. Вершины, ребра и грани многогранника.
Построение прямоугольников.
Взаимное расположение точек, отрезков, лучей, прямых, многоугольников, окружностей.
Треугольники и их виды.
Виды углов.
Виды треугольников в зависимости от величины углов (остроугольные, прямоугольные, тупоугольные).
Виды треугольников в зависимости от длин сторон (разносторонние, равнобедренные, равносторонние).
Практические работы. Ознакомление с моделями многогранников: показ и счет вершин, ребер и граней многоугольника. Склеивание моделей многогранников по их разверткам. Сопоставление фигур и разверток: выбор фигуры, имеющей соответствующую развертку, проверка правильности выбора. Сравнение углов наложением.
К концу обучения в 4 классе учащиеся должны:
называть:
сравнивать:
воспроизводить по памяти:
формулировки свойств арифметических действий (переместительное и сочетательное свойства сложения и умножения, распределительные свойства умножения относительно сложения и вычитания);
соотношения между единицами массы: 1 т = 1000 кг, 1 ц = 100 кг, 1 т = 10 ц;
применять:
правила порядка выполнения действий при вычислении значений выражений со скобками и без них, содержащих 3-4 арифметических действия;
правила поразрядного сложения и вычитания, а также алгоритмы умножения и деления при выполнении письменных расчетов с многозначными числами;
знание зависимости между скоростью, путем и временем движения для решения арифметических задач;
решать учебные и практические задачи:
читать и записывать многозначные числа в пределах
миллиона;
выполнять несложные устные вычисления в пределах сотни, вычислять с большими числами, легко сводимыми к действиям в пределах 100;
выполнять четыре арифметических действия (сложение, вычитание, умножение и деление) с многозначными числами в пределах миллиона (в том числе умножение и деление на однозначное, на двузначное число);
решать арифметические текстовые задачи разных видов.