Меню
Разработки
Разработки  /  Математика  /  Планирование  /  6 класс  /  Рабочая программа по математике для 6 класса

Рабочая программа по математике для 6 класса

Программа рассчитана на 5 часов в неделю
20.02.2020

Содержимое разработки

МУНИЦИПАЛЬНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА №22 С УГЛУБЛЕННЫМ ИЗУЧЕНИЕМ ОТДЕЛЬНЫХ ПРЕДМЕТОВ





«Согласовано» «Утверждаю»

Заместитель директора по УВР И.о директора МОУ СОШ №22

___________/_Федорова Л. Н. _____________/ Чуравцева Л.В.

«2» сентября 2019г. «2» сентября 2019г.






Рабочая программа


МАТЕМАТИКА


БАЗОВЫЙ


6 КЛАСС


Стегачева Ирина Андреевна










Рассмотрено на заседании кафедры
предметов естественно – научного цикла

Протокол № 1 от «29» августа 2019 г.












2019-2020 учебный год


Пояснительная записка


Рабочая программа по математике для 6 класса составлена на основе Фунда­ментального ядра содержания общего образования, требо­ваний к результатам освоения образовательной программы основного общего образования, представленных в федераль­ном государственном образовательном стандарте основного общего образования, утвержденном Приказом Министерства образования и науки Российской Федерации от «17» декабря 2010 г. № 1897, на основе авторской программы А.Г. Мерзляк, В.Б. Полонский, М.С. Якир, Е.В. Буцко (Математика: программы: 5–11 классы А.Г. Мерзляк, В.Б. Полонский, М.С. Якир, Е.В. Буцко /. — М.: Вентана-Граф, 2014. — 152 с.) и УМК:

1. Математика: 6 класс: учебник для учащихся общеобразовательных учреждений / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М.: Вентана-Граф, 2013-2014.

2. Математика: 6 класс: дидактические материалы: пособие для учащихся общеобразовательных организаций / А.Г. Мерзляк, В.Б. Полонский, Е.М. Рабинович, М.С. Якир. — М.: Вентана-Граф, 2014.

3. Математика: 6 класс: рабочая тетрадь №1, №2, №3 / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М.: Вентана-Граф, 2014.

4. Математика: 6 класс: методическое пособие / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М.: Вентана-Граф, 2014.

В программе также учитываются доминирующие идеи и положения программы развития и формирования универ­сальных учебных действий для основного общего образова­ния, которые обеспечивают формирование российской гра­жданской идентичности, коммуникативных качеств лично­сти и способствуют формированию ключевой компетенции — умения учиться.

Курс математики 5-6 классов является фундаментом для математического образования и развития школьников, доминирующей функцией при его изучении в этом возрасте является интеллектуальное развитие учащихся. Курс по­строен на взвешенном соотношении новых и ранее усвоен­ных знаний, обязательных и дополнительных тем для изу­чения, а также учитывает возрастные и индивидуальные особенности усвоения знаний учащимися.

Практическая значимость школьного курса математики 5-6 классов состоит в том, что предметом его изучения яв­ляются пространственные формы и количественные отно­шения реального мира. В современном обществе математи­ческая подготовка необходима каждому человеку, так как математика присутствует во всех сферах человеческой дея­тельности.

Математика является одним из опорных школьных предметов. Математические знания и умения необходимы для изучения алгебры и геометрии в 7-9 классах, а также для изучения смежных дисциплин.

Одной из основных целей изучения математики является развитие мышления, прежде всего формирование абстракт­ного мышления. С точки зрения воспитания творческой личности особенно важно, чтобы в структуру мышления учащихся, кроме алгоритмических умений и навыков, ко­торые сформулированы в стандартных правилах, формулах и алгоритмах действий, вошли эвристические приёмы как общего, так и конкретного характера. Эти приёмы, в част­ности, формируются при поиске решения задач высших уровней сложности. В процессе изучения математики так­же формируются и такие качества мышления, как сила и гибкость, конструктивность и критичность. Для адапта­ции в современном информационном обществе важным фактором является формирование математического стиля мышления, включающего в себя индукцию и дедукцию, обобщение и конкретизацию, анализ и синтез, классифика­цию и систематизацию, абстрагирование и аналогию.

Обучение математике даёт возможность школьникам на­учиться планировать свою деятельность, критически оце­нивать её, принимать самостоятельные решения, отстаи­вать свои взгляды и убеждения.

В процессе изучения математики школьники учатся из­лагать свои мысли ясно и исчерпывающе, приобретают на­выки чёткого и грамотного выполнения математических записей, при этом использование математического языка позволяет развивать у учащихся грамотную устную и пись­менную речь.

Знакомство с историей развития математики как науки формирует у учащихся представления о математике как ча­сти общечеловеческой культуры.

Значительное внимание в изложении теоретического ма­териала курса уделяется его мотивации, раскрытию сути основных понятий, идей, методов. Обучение построено на базе теории развивающего обучения, что достигается осо­бенностями изложения теоретического материала и упраж­нениями на сравнение, анализ, выделение главного, уста­новление связей, классификацию, обобщение и системати­зацию. Особо акцентируются содержательное раскрытие математических понятий, толкование сущности математи­ческих методов и области их применения, демонстрация возможностей применения теоретических знаний для реше­ния задач прикладного характера, например решения текс­товых задач, денежных и процентных расчётов, умение пользоваться количественной информацией, представлен­ной в различных формах, умение читать графики. Осозна­ние общего, существенного является основной базой для ре­шения упражнений.



Цели и задачи курса математики


Обучение математике в основной школе направлено на достижение следующих целей:

в направлении личностного развития

  • развитие логического и критического мышления, куль­туры речи, способности к умственному эксперименту;

  • формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;

  • воспитание качеств личности, обеспечивающих социаль­ную мобильность, способность принимать самостоятельные решения;

  • формирование качеств мышления, необходимых для адаптации в современном информационном обществе;

  • развитие интереса к математическому творчеству и ма­тематических способностей;

в метапредметном направлении

  • формирование представлений о математике как части общечеловеческой культуры, о значимости математики в раз­витии цивилизации и современного общества;

  • развитие представлений о математике как форме описа­ния и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;

  • формирование общих способов интеллектуальной дея­тельности, характерных для математики и являющихся осно­вой познавательной культуры, значимой для различных сфер человеческой деятельности;

в предметном направлении

  • овладение математическими знаниями и умениями, не­обходимыми для продолжения обучения в старшей школе или иных общеобразовательных учреждениях, изучения смежных дисциплин, применения в повседневной жизни;

  • создание фундамента для математического развития, формирования механизмов мышления, характерных для мате­матической деятельности.

Применительно к курсу математики в 6-м классе цели состоят в систематическом развитии понятия числа; выработке умений выполнять устно и письменно арифметические действия над числами, переводить практические задачи на язык математики и подготовке учащихся к изучению систематических курсов алгебры и геометрии.


Место учебного предмета в учебном плане


Предмет математика 6 класса входит в компонент образовательного учреждения. Данный курс обеспечивает непрерывность изучения предмета Математика в основной школе. На изучение курса в 6 классах отводится 175 часа в год, 5 часов в неделю.



Планируемые результаты изучения учебного предмета «МАТЕМАТИКА»


Изучение математики по данной программе способствует формированию у учащихся личностных, метапредметных и предметных результатов обучения, соответствующих тре­бованиям федерального государственного образовательного стандарта основного общего образования.


Личностные результаты – это сформировавшаяся в образовательном процессе система ценностных отношений учащихся к себе, другим участникам образовательного процесса, самому образовательному процессу, объектам познания, результатам образовательной деятельности. Основными личностными результатами, формируемыми при изучении математики в основной школе, являются:

  • контролировать процесс математической деятельности;

  • Проявлять инициативу, находчивость и активность при решении математических задач;

  • осознать вклад отечественных ученых в развитие мировой науки, воспитать в себе чувство патриотизма, уважения к Отечеству;

  • ответственно относиться к учению, усилить мотивацию к обучению и познанию;

  • формирование осознанного выбора на основе уважительного отношения к труду.


Метапредметные результаты:

Ученик научится:

  • соотносить свои действия с планируемыми ре­зультатами,

  • осуществлять контроль своей деятельности в процессе достижения результата;

  • находить в различных источниках информа­цию, необходимую для решения математических про­блем;

  • понимать и использовать математические сред­ства наглядности (графики, таблицы, схемы и др.) для иллюстрации;

  • действовать в соответствии с предложенным алгоритмом;

  • использовать первоначальные представления об идеях и о методах математики как об универсальном языке науки и тех­ники, о средстве моделирования явлений и процессов.

Ученик получит возможность:

  • самостоятельно определять цели своего обуче­ния;

  • использовать математические сред­ства наглядности (графики, таблицы, схемы и др.) для интерпретации, аргументации;

  • определять понятия, создавать обобщения, уста­навливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации;

  • устанавливать причинно-следственные связи;

  • видеть математическую задачу в контексте про­блемной ситуации в других дисциплинах, в окружаю­щей жизни;


Предметные результаты:

Ученик научится:

  • выполнять вычисления с натуральными числами, обыкновенными и десятичными дробями;

  • решать текстовые задачи арифметическим способами с помощью составления и решения уравнений;

  • изображать фигуры на плоскости;

  • использовать геометрический «язык» для описания предметов окружающего мира;

  • распознавать равные и симметричные фигуры;

  • проводить несложные практические вычисления с процентами, использовать прикидку и оценку; вы­полнять необходимые измерения;

  • использовать буквенную символику для записи общих утверждений, формул, выражений, уравнений;


Ученик получит возможность:

  • осознавать значения математики для повседневной жизни человека;

  • иметь представление о математической науке, как сфере мате­матической деятельности, об этапах её развития, о её значимости для развития цивилизации;

  • работать с учебным математическим текстом (анализировать, извлекать необходимую информацию),

  • точно и грамотно выражать свои мысли с применением математической терминологии и симво­лики,

  • проводить классификации.

  • владеть базовым понятийным аппаратом по основным разделам содержания;

  • получить практически значимые математические умения и навыки, их

применение к решению математических и нематематических задач.



Раздел 1. Арифметика

По окончании изучения курса обучающийся научится:

  • понимать особенности десятичной системы счисления;

  • использовать понятия, связанные с делимостью нату­ральных чисел;

  • выражать числа в эквивалентных формах, выбирая наи­более подходящую в зависимости от конкретной ситу­ации;

  • сравнивать и упорядочивать рациональные числа;

  • выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применять калькулятор;

  • использовать понятия и умения, связанные с пропорцио­нальностью величин, процентами, в ходе решения мате­матических задач и задач из смежных предметов, выпол­нять несложные практические расчёты;

  • анализировать графики зависимостей между величина­ми (расстояние, время; температура и т. п.).


Обучающийся получит возможность:

  • познакомиться с позиционными системами счисления с основаниями, отличными от 10;

  • углубить и развить представления о натуральных числах и свойствах делимости;

научиться использовать приемы, рационализирующие вычисления, приобрести навык контролировать вычис­ления, выбирая подходящий для ситуации способ.


Раздел 2. Числовые и буквенные выражения. Уравнения.


По окончании изучения курса обучающийся научится:

  • выполнять операции с числовыми выражениями; выполнять преобразования буквенных выражений (рас­крытие скобок, приведение подобных слагаемых);

  • решать линейные уравнения, решать текстовые задачи алгебраическим методом.


Обучающийся получит возможность:

  • развить представления о буквенных выражениях и их преобразованиях;

  • овладеть специальными приёмами решения уравнений, применять аппарат уравнений для решения как тексто­вых, так и практических задач.


Раздел 3. Геометрические фигуры. Измерение геометрических величин.


По окончании изучения курса обучающийся научится:

  • распознавать на чертежах, рисунках, моделях и в окру­жающем мире плоские и пространственные геометриче­ские фигуры и их элементы; строить углы, определять их градусную меру;

  • распознавать и изображать развёртки куба, прямоуголь­ного параллелепипеда, правильной пирамиды, цилиндра и конуса;

  • определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот;

  • вычислять объём прямоугольного параллелепипеда и куба.


Обучающийся получит возможность:

  • научиться вычислять объём пространственных геомет­рических фигур, составленных из прямоугольных парал­лелепипедов;

  • углубить и развить представления о пространственных геометрических фигурах;

  • научиться применять понятие развёртки для выполне­ния практических расчётов.


Раздел 4. Элементы статистики, вероятности. Комбинаторные задачи


По окончании изучения курса обучающийся научится:

  • использовать простейшие способы представления и ана­лиза статистических данных;

  • решать комбинаторные задачи на нахождение количест­ва объектов или комбинаций.

Обучающийся получит возможность:

  • приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опро­са в виде таблицы, диаграммы;

  • научиться некоторым специальным приёмам решения комбинаторных задач.



Содержание курса математики 6 класса


Раздел 1. Арифметика (17ч)

  • Делители и кратные натурального числа. Наибольший общий делитель. Наименьшее общее кратное. Признаки делимости на 2, на 3, на 5, на 9, на 10.

  • Простые и составные числа. Разложение чисел на про­стые множители.

  • Решение текстовых задач арифметическими способами.


Раздел 2. Дроби(38ч)

  • Обыкновенные дроби. Основное свойство дроби. Нахож­дение дроби от числа. Нахождение числа по значению его дроби. Правильные и неправильные дроби. Смешанные числа.

  • Сравнение обыкновенных дробей и смешанных чисел. Арифметические действия с обыкновенными дробями и смешанными числами.

  • Десятичные дроби. Сравнение и округление десятичных дробей. Арифметические действия с десятичными дробя­ми. Прикидки результатов вычислений. Представление десятичной дроби в виде обыкновенной дроби и обыкно­венной в виде десятичной. Бесконечные периодические десятичные дроби. Десятичное приближение обыкновен­ной дроби.

  • Отношение. Процентное отношение двух чисел. Деление числа в данном отношении. Масштаб.

  • Пропорция. Основное свойство пропорции. Прямая и об­ратная пропорциональные зависимости.

  • Решение текстовых задач арифметическими спосо­бами.


Раздел 3. Рациональные числа(70ч)

  • Положительные, отрицательные числа и число 0.

  • Противоположные числа. Модуль числа.

  • Целые числа. Рациональные числа. Сравнение рацио­нальных чисел. Арифметические действия с рациональ­ными числами. Свойства сложения и умножения рацио­нальных чисел.

  • Координатная прямая. Координатная плоскость.


Раздел 4. Числовые и буквенные выражения. Уравнения

  • Числовые выражения. Значение числового выражения. Порядок действий в числовых выражениях. Буквенные выражения. Раскрытие скобок. Подобные слагаемые, приведение подобных слагаемых. Формулы.

  • Уравнения. Корень уравнения. Основные свойства урав­нений. Решение текстовых задач с помощью уравнений.


Раздел 5. Элементы статистики, вероятности. Комбинаторные задачи(3ч)

  • Случайное событие. Достоверное и невозможное собы­тия. Вероятность случайного события. Решение комби­наторных задач.


Раздел 6. Геометрические фигуры

  • Окружность и круг. Длина окружности.

  • Равенство фигур. Понятие и свойства площади. Площадь прямоугольника и квадрата. Площадь круга. Ось сим­метрии фигуры.

  • Наглядные представления о пространственных фигурах: ци­линдр, конус, шар, сфера. Примеры развёрток много­гранников, цилиндра, конуса. Понятие и свойства объё­ма.

  • Взаимное расположение двух прямых. Перпендикуляр­ные прямые. Параллельные прямые.

  • Осевая и центральная симметрии.


Раздел 7. Математика в историческом развитии

Дроби в Вавилоне, Египте, Риме, на Руси. Открытие десятичных дробей. Мир простых чисел. Золотое сечение. Число нуль. Появление отрицательных чисел. Л.Ф. Магницкий. П.Л. Чебышев. А.Н. Колмогоров.

Тематическое планирование


п/п

Разделы программы

Кол-во часов

Контрольных работ

Характеристика основных видов деятельности ученика

1

Делимость натуральных чисел

17

1

Формулировать определения понятий: делитель, кратное, простое число, составное число, общий делитель, наибольший общий делитель, взаимно простые числа, общее кратное, наименьшее общее кратное и признаки делимости на 2, на 3, на 5, на 9, на 10.

Описывать правила нахождения наибольшего общего делителя (НОД), наименьшего общего кратного (НОК) нескольких чисел, разложения натурального числа на простые множители.

Участие в мини проектной деятельности «Искусство счета».

2

Обыкновенные дроби

38

3

Формулировать определения понятий: несократимая дробь, общий знаменатель двух дробей, взаимно обратные числа. Применять основное свойство дроби для сокращения дробей. Приводить дроби к новому знаменателю. Сравнивать обыкновенные дроби. Выполнять арифметические действия над обыкновенными дробями. Находить дробь от числа и число по заданному значению его дроби. Преобразовывать обыкновенные дроби в десятичные. Находить десятичное приближение обыкновенной дроби.

Участие в мини проектной деятельности «История возникновения обыкновенных дробей».

3

Отношения и пропорции

28

2

Формулировать определения понятий: отношение, пропорция, процентное отношение двух чисел, прямо пропорциональные и обратно пропорциональные величины.

Применять основное свойство отношения и основное свойство пропорции. Приводить примеры и описывать свойства величин, находящихся в прямой и обратной пропорциональных зависимостях. Находить процентное отношение двух чисел. Делить число на пропорциональные части.

Записывать с помощью букв основные свойства дроби, отношения, пропорции.





Анализировать информацию, представленную в виде столбчатых и круговых диаграмм. Представлять информацию в виде столбчатых и круговых диаграмм.

Приводить примеры случайных событий. Находить вероятность случайного события в опытахс равновозможными исходами.

Распознавать на чертежах и рисунках окружность, круг, цилиндр, конус, сферу, шар и их элементы. Распознавать в окружающем мире модели этих фигур. Строить с помощью циркуля окружность заданного радиуса. Изображать развёртки цилиндра и конуса. Называть приближённое значение числа. Находить с помощью формул длину окружности, площадь круга.

Участие в мини проектной деятельности «Мой безопасный путь в школу», «Вероятность реальных событий»

4

Рациональные числа и действия над ними

70

5

Приводить примеры использования положительных и отрицательных чисел. Формулировать определение координатной прямой. Строить накоординатной прямой точку с заданной координатой, определять координату точки.

Характеризовать множество целых чисел. Объяснять понятие множества рациональных чисел.

Формулировать определение модуля числа.





Находить модуль числа.

Сравнивать рациональные числа. Выполнять арифметические действия над рациональными числами. Записывать свойства арифметических действий над рациональными числами в виде формул. Называть коэффициент буквенного выражения.

Применять свойства при решении уравнений. Решать текстовые задачи с помощью уравнений. Распознавать на чертежах и рисунках перпендикулярные и параллельные прямые, фигуры, имеющие ось симметрии, центр симметрии. Указывать в окружающем мире модели этих фигур. Формулировать определение перпендикулярных прямых и параллельных прямых. Строить с помощью угольника перпендикулярные прямые и параллельные прямые.

Объяснять и иллюстрировать понятие координатной плоскости. Строить на координатной плоскости точки с заданными координатами, определять координаты точек на плоскости. Строить отдельные графики зависимостей между величинами по точкам. Анализировать графики зависимостей между величинами (расстояние, время, температура и т. п.).

Участие в мини проектной деятельности «Появление отрицательных чисел и нуля», «Симметрия в природе».

5

Повторение и систематизация учебного материала

18+1(в начале года)



6

Итоговая контрольная работа

1

1



Резерв

3



Всего уроков

170


Контрольных работ

12





-80%
Курсы повышения квалификации

Исследовательская деятельность учащихся

Продолжительность 72 часа
Документ: Удостоверение о повышении квалификации
4000 руб.
800 руб.
Подробнее
Скачать разработку
Сохранить у себя:
Рабочая программа по математике для 6 класса (37.22 KB)

Комментарии 0

Чтобы добавить комментарий зарегистрируйтесь или на сайт