Меню
Разработки
Разработки  /  Геометрия  /  Презентации  /  8 класс  /  Проект "Теорема Пифагора" (различные формулировки и доказательства)

Проект "Теорема Пифагора" (различные формулировки и доказательства)

Проект учащихся 8 класса по теме "Теорема Пифагора" (различные формулировки и доказательства)
29.11.2019

Содержимое разработки

Теорема Пифагора Различные формулировки Исследовательский проект Выполнен учениками 8 класса МКОУ «Эсто-Алтайская СОШ им. Д.Н.Кугультинова» Шумский Станислав Булаева Мария 2017-2018 уч.год

Теорема Пифагора

Различные формулировки

Исследовательский проект

Выполнен учениками 8 класса МКОУ «Эсто-Алтайская СОШ им. Д.Н.Кугультинова»

Шумский Станислав

Булаева Мария

2017-2018 уч.год

Как известно… Теорема Пифагора звучит так: «В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов его катетов», но… Как звучала эта теорема у Евклида: «В прямоугольном треугольнике квадрат стороны, натянутой над прямым углом, равен квадратам на сторонах, заключающих прямой угол  » Как звучала у Аннаирици : «Во всяком прямоугольном треугольнике квадрат, образованный на стороне, натянутой над прямым углом, равен сумме двух квадратов, образованных на двух сторонах, заключающих прямой угол»

Как известно…

  • Теорема Пифагора звучит так: «В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов его катетов», но…
  • Как звучала эта теорема у Евклида: «В прямоугольном треугольнике квадрат стороны, натянутой над прямым углом, равен квадратам на сторонах, заключающих прямой угол »
  • Как звучала у Аннаирици : «Во всяком прямоугольном треугольнике квадрат, образованный на стороне, натянутой над прямым углом, равен сумме двух квадратов, образованных на двух сторонах, заключающих прямой угол»
Научное открытие В настоящее время известно, что эта теорема не была открыта Пифагором. Однако одни полагают, что Пифатор первым дал ее полноценное докзательство, а другие отказывают ему и в этой заслуге. Некоторые приписывают Пифагору доказательство, которое Евклид приводит в первой книге своих

Научное открытие

  • В настоящее время известно, что эта теорема не была открыта Пифагором. Однако одни полагают, что Пифатор первым дал ее полноценное докзательство, а другие отказывают ему и в этой заслуге. Некоторые приписывают Пифагору доказательство, которое Евклид приводит в первой книге своих "Начал". С другой стороны, Прокл утверждает, что доказательство в "Началах" принадлежит самому Евклиду. Как мы видим, история математики почти не сохранила достоверных данных о жизни Пифагора и его математической деятельности. Зато легенда сообщает даже ближайшие обстоятельства, сопровождавшие открытие теоремы. Многим известен сонет Шамиссо:
Доказательства теоремы Пифагора Простейшее Метод разложения Метод дополнения Другие…

Доказательства теоремы Пифагора

  • Простейшее
  • Метод разложения
  • Метод дополнения
  • Другие…
Простейшее доказательство Простейшее доказательство теоремы получается в простейшем случае равнобедренного прямоугольного треугольника. В самом деле, достаточно просто посмотреть на мозаику равнобедренных прямоугольных треугольников , чтобы убедиться в справедливости теоремы. Например, для треугольника ABC : квадрат, построенный на гипотенузе АС, содержит 4 исходных треугольника, а квадраты, построенные на катетах,- по два. Теорема доказана.

Простейшее доказательство

  • Простейшее доказательство теоремы получается в простейшем случае равнобедренного прямоугольного треугольника. В самом деле, достаточно просто посмотреть на мозаику равнобедренных прямоугольных треугольников , чтобы убедиться в справедливости теоремы. Например, для треугольника ABC : квадрат, построенный на гипотенузе АС, содержит 4 исходных треугольника, а квадраты, построенные на катетах,- по два.
  • Теорема доказана.
Доказательство методом дополнения От двух равных площадей нужно отнять равновеликие части так, чтобы в одном случае остались два квадрата, построенные на катетах, а в другом- квадрат, построенный на гипотенузе. Ведь если в равенствах: В-А=С и В1-А1=С1 . Ч асть А равновелика части А1 , а часть В равновелика В1 , то части С и С1 также равновелики.

Доказательство методом дополнения

  • От двух равных площадей нужно отнять равновеликие части так, чтобы в одном случае остались два квадрата, построенные на катетах, а в другом- квадрат, построенный на гипотенузе. Ведь если в равенствах: В-А=С и В1-А1=С1 . Ч асть А равновелика части А1 , а часть В равновелика В1 , то части С и С1 также равновелики.
Доказательство методом дополнения Поясним этот метод на примере. На рис. к обычной пифагоровой фигуре приставлены сверху и снизу треугольники 2 и 3 , равные исходному треугольнику 1 . Прямая DG обязательно пройдет через C. Заметим теперь (далее мы это докажем), что шестиугольники DABGFE и CAJKHB равновелики. Если мы от первого из них отнимем треугольники 1 и 2 , то останутся квадраты, построенные на катетах, а если от второго шестиугольника отнимем равные треугольники 1 и 3 , то останется квадрат, построенный на гипотенузе. Отсюда вытекает, что квадрат, построенный на гипотенузе, равновелик сумме квадратов,построенных на катетах.

Доказательство методом дополнения

  • Поясним этот метод на примере. На рис. к обычной пифагоровой фигуре приставлены сверху и снизу треугольники 2 и 3 , равные исходному треугольнику 1 . Прямая DG обязательно пройдет через C. Заметим теперь (далее мы это докажем), что шестиугольники DABGFE и CAJKHB равновелики. Если мы от первого из них отнимем треугольники 1 и 2 , то останутся квадраты, построенные на катетах, а если от второго шестиугольника отнимем равные треугольники 1 и 3 , то останется квадрат, построенный на гипотенузе. Отсюда вытекает, что квадрат, построенный на гипотенузе, равновелик сумме квадратов,построенных на катетах.
Доказательство методом дополнения Остается доказать, что наши шестиугольники равновелики. Заметим, что прямая DG делит верхний шестиугольник на равновеликие части; то же можно сказать о прямой CK и нижнем шестиугольнике. Повернем четырехугольник DABG , составляющий половину шестиугольника DABGFE , вокруг точки А по часовой стрелке на угол 90; тогда он совпадет с четырехугольником CAJK , составляющим половину шестиугольника CAJKHB . Поэтому шестиугольники DABGFE и CAJKHB равновелики.  Теорема доказана

Доказательство методом дополнения

  • Остается доказать, что наши шестиугольники равновелики. Заметим, что прямая DG делит верхний шестиугольник на равновеликие части; то же можно сказать о прямой CK и нижнем шестиугольнике. Повернем четырехугольник DABG , составляющий половину шестиугольника DABGFE , вокруг точки А по часовой стрелке на угол 90; тогда он совпадет с четырехугольником CAJK , составляющим половину шестиугольника CAJKHB . Поэтому шестиугольники DABGFE и CAJKHB равновелики.

Теорема доказана

Доказательство методом вычитания  Знакомый нам чертеж теоремы Пифагора заключим в прямоугольную рамку, направления сторон которой совпадают с направлениями катетов треугольника. Продолжим некоторые из отрезков фигуры так, как указано на рисунке, при этом прямоугольник распадается на несколько треугольников, прямоугольников и квадратов. Выбросим из прямоугольника сначала несколько частей так чтобы остался лишь квадрат, построенный на гипотенузе. Эти части следующие:

Доказательство методом вычитания

  • Знакомый нам чертеж теоремы Пифагора заключим в прямоугольную рамку, направления сторон которой совпадают с направлениями катетов треугольника. Продолжим некоторые из отрезков фигуры так, как указано на рисунке, при этом прямоугольник распадается на несколько треугольников, прямоугольников и квадратов. Выбросим из прямоугольника сначала несколько частей так чтобы остался лишь квадрат, построенный на гипотенузе. Эти части следующие:
Доказательство методом вычитания треугольники 1, 2, 3, 4; прямоугольник 5; прямоугольник 6 и квадрат 8; прямоугольник 7 и квадрат 9; Затем выбросим из прямоугольника части так, чтобы остались только квадраты, построенные на катетах. Этими частями будут: прямоугольники 6 и 7; прямоугольник 5; прямоугольник 1(заштрихован); прямоугольник 2(заштрихован);

Доказательство методом вычитания

  • треугольники 1, 2, 3, 4;

прямоугольник 5;

прямоугольник 6 и квадрат 8;

прямоугольник 7 и квадрат 9;

Затем выбросим из прямоугольника части так, чтобы остались только квадраты, построенные на катетах. Этими частями будут:

прямоугольники 6 и 7;

прямоугольник 5;

прямоугольник 1(заштрихован);

прямоугольник 2(заштрихован);

Доказательство методом вычитания Нам осталось лишь показать, что отнятые части равновелики. Это легко видеть в силу расположения фигур. Из рисунка ясно, что: прямоугольник 5 равновелик самому себе; четыре треугольника 1,2,3,4 равновелики двум прямоугольникам 6 и 7; прямоугольник 6 и квадрат 8, взятые вместе, равновелики прямоугольнику 1 (заштрихован);; прямоугольник 7 вместе с квадратом 9 равновелики прямоугольнику 2(заштрихован);  Доказательство закончено

Доказательство методом вычитания

Нам осталось лишь показать, что отнятые части равновелики. Это легко видеть в силу расположения фигур. Из рисунка ясно, что:

прямоугольник 5 равновелик самому себе;

четыре треугольника 1,2,3,4 равновелики двум прямоугольникам 6 и 7;

прямоугольник 6 и квадрат 8, взятые вместе, равновелики прямоугольнику 1 (заштрихован);;

прямоугольник 7 вместе с квадратом 9 равновелики прямоугольнику 2(заштрихован);

Доказательство закончено

Доказательство Хоукинсa  Прямоугольный треугольник ABC с прямым углом C повернем на 90° так, чтобы он занял положение A'CB'. Продолжим гипотенузу A'В' за точку A' до пересечения с линией АВ в точке D. Отрезок В'D будет высотой треугольника В'АВ. Рассмотрим теперь заштрихованный четырехугольник A'АВ'В . Его можно разложить на два равнобедренных треугольника САA' и СВВ' (или на два треугольника A'В'А и A'В'В).

Доказательство Хоукинсa

  • Прямоугольный треугольник ABC с прямым углом C повернем на 90° так, чтобы он занял положение A'CB'. Продолжим гипотенузу A'В' за точку A' до пересечения с линией АВ в точке D. Отрезок В'D будет высотой треугольника В'АВ. Рассмотрим теперь заштрихованный четырехугольник A'АВ'В . Его можно разложить на два равнобедренных треугольника САA' и СВВ' (или на два треугольника A'В'А и A'В'В).
Доказательство Хоукинсa SCAA'=b²/2, SCBB'=a²/2 SA'AB'B=(a²+b²)/2 Треугольники A'В'А и A'В'В имеют общее основание с и высоты DA и DB, поэтому : SA'AB'B=c*DA/2+ c*DB/2=c(DA+DB)/2=c²/2 Сравнивая два полученных выражения для площади, получим: a²+b²=c² Теорема доказана.

Доказательство Хоукинсa

SCAA'=b²/2, SCBB'=a²/2

SA'AB'B=(a²+b²)/2

Треугольники A'В'А и A'В'В имеют общее основание с и высоты DA

и DB, поэтому :

  • SA'AB'B=c*DA/2+ c*DB/2=c(DA+DB)/2=c²/2

Сравнивая два полученных выражения для площади, получим:

a²+b²=c²

Теорема доказана.

Векторное доказательство Пусть АВС - прямоугольный треугольник с прямым углом при вершине С, построенный на векторах. Тогда справедливо векторное равенство:b+c=a откуда имеем c = a - b возводя обе части в квадрат, получим c²=a²+b²-2ab Так как a перпендикулярно b, то ab=0, откуда c²=a²+b² или c²=a²+b² Нами снова доказана теорема Пифагора. Если треугольник АВС - произвольный, то та же формула дает т. н. теорему косинусов , обобщающую теорему Пифагора.

Векторное доказательство

Пусть АВС - прямоугольный треугольник с прямым углом при вершине С, построенный на векторах. Тогда справедливо векторное равенство:b+c=a

откуда имеем

c = a - b

возводя обе части в квадрат, получим

c²=a²+b²-2ab

Так как a перпендикулярно b, то ab=0, откуда

c²=a²+b² или c²=a²+b²

Нами снова доказана теорема Пифагора.

Если треугольник АВС - произвольный, то та же формула дает т. н. теорему косинусов , обобщающую теорему Пифагора.

Доказательство Евклида  Это доказательство было приведено Евклидом в его

Доказательство Евклида

  • Это доказательство было приведено Евклидом в его "Началах". По свидетельству Прокла (Византия) , оно придумано самим Евклидом. Доказательство Евклида приведено в предложении 47 первой книги "Начал".
  • На гипотенузе и катетах прямоугольного треугольника АВС строятся соответствующие квадраты и доказывается, что прямоугольник BJLD равновелик квадрату ABFH, а прямоугольник ICEL - квадрату АСКС. Тогда сумма квадратов на катетах будет равна квадрату на гипотенузе.
  • В самом деле, треугольники ABD и BFC равны по двум сторонам и углу между ними:
Доказательство Евклида FB = AB, BC = BD   РFBC = d + РABC = РABD  Но SABD = 1/2 S BJLD, так как у треугольника ABD и прямоугольника BJLD общее основание BD и общая высота LD. Аналогично SFBC=1\2S ABFH (BF-общее основание, АВ-общая высота). Отсюда, учитывая, что SABD=SFBC, имеем SBJLD=SABFH. Аналогично, используя равенство треугольников ВСК и АСЕ, доказывается, что SJCEL=SACKG. Итак, SABFH+SACKG= SBJLD+SJCEL= SBCED, что и требовалось доказать.

Доказательство Евклида

  • FB = AB, BC = BD

РFBC = d + РABC = РABD

Но

SABD = 1/2 S BJLD,

так как у треугольника ABD и прямоугольника BJLD общее основание BD и общая высота LD. Аналогично

SFBC=1\2S ABFH

(BF-общее основание, АВ-общая высота). Отсюда, учитывая, что

SABD=SFBC,

имеем

SBJLD=SABFH.

Аналогично, используя равенство треугольников ВСК и АСЕ, доказывается, что

SJCEL=SACKG.

Итак,

SABFH+SACKG= SBJLD+SJCEL= SBCED,

что и требовалось доказать.

Удивительный факт Вопрос о том, можно ли с помощью световых сигналов объясняться с этими гипотетическими существами, вызвал оживленную дискуссию. Парижской академией наук была даже установлена премия в 100000 франков тому, кто первый установит связь с каким-нибудь обитателем другого небесного тела; эта премия все еще ждет счастливца. В шутку, хотя и не совсем безосновательно , было решено передать обитателям Марса сигнал в виде теоремы Пифагора .  Неизвестно, как это сделать; но для всех очевидно, что математический факт, выражаемый теоремой Пифагора имеет место всюду и поэтому похожие на нас обитатели другого мира должны понять такой сигнал.

Удивительный факт

  • Вопрос о том, можно ли с помощью световых сигналов объясняться с этими гипотетическими существами, вызвал оживленную дискуссию. Парижской академией наук была даже установлена премия в 100000 франков тому, кто первый установит связь с каким-нибудь обитателем другого небесного тела; эта премия все еще ждет счастливца. В шутку, хотя и не совсем безосновательно , было решено передать обитателям Марса сигнал в виде теоремы Пифагора .

Неизвестно, как это сделать; но для всех очевидно, что математический факт, выражаемый теоремой Пифагора имеет место всюду и поэтому похожие на нас обитатели другого мира должны понять такой сигнал.

Итоги работы На самом деле существует много способов доказательства теоремы Пифагора: доказательство Евклида, Хоукинса, Вальдхейма, способ «луночками» Гиппократа, доказательство Басхары, Эпштейна, Нильсена, Бетхера, Перигаля, Гутхейля, векторное доказательство и многие другие…

Итоги работы

  • На самом деле существует много способов доказательства теоремы Пифагора: доказательство Евклида, Хоукинса, Вальдхейма, способ «луночками» Гиппократа, доказательство Басхары, Эпштейна, Нильсена, Бетхера, Перигаля, Гутхейля, векторное доказательство и многие другие…
-80%
Курсы повышения квалификации

Развитие пространственных представлений школьников в обучении математике в условиях реализации ФГОС

Продолжительность 36 часов
Документ: Удостоверение о повышении квалификации
3000 руб.
600 руб.
Подробнее
Скачать разработку
Сохранить у себя:
Проект "Теорема Пифагора" (различные формулировки и доказательства) (716 KB)

Комментарии 0

Чтобы добавить комментарий зарегистрируйтесь или на сайт