Комбинаторика - это наука, с который каждый встречается в повседневной жизни: сколько способов выбрать 3 дежурных для уборки класса или сколько способов составить слово из данных букв. В целом, комбинаторика позволяет вычислить, сколько различных комбинаций, согласно некоторым условиям, можно составить из заданных объектов (одинаковых или разных).
Как наука комбинаторика возникла еще в 16 веке, а теперь ее изучает каждый студент (и зачастую даже школьник). Начинают изучение с понятий перестановок, размещений, сочетаний (с повторениями или без), на эти темы вы найдете задачи и ниже. Наиболее известные правила комбинаторики - правила суммы и произведения, которые чаще всего применяются в типовых комбинаторных задачах.
Ниже вы найдете несколько примеров задач с решениями на комбинаторные понятия и правила, которые позволят разобраться с типовыми заданиями. Если есть трудности с задачами - заказывайте контрольную по комбинаторике, мы обязательно поможем.
Задачи по комбинаторике.
Задача 1. У мамы 2 яблока и 3 груши. Каждый день в течение 5 дней подряд она выдает по одному фрукту. Сколькими способами это может быть сделано?
Задача 2. Предприятие может предоставить работу по одной специальности 4 женщинами, по другой - 6 мужчинам, по третьей - 3 работникам независимо от пола. Сколькими способами можно заполнить вакантные места, если имеются 14 претендентов: 6 женщин и 8 мужчин?
Задача 3. В пассажирском поезде 9 вагонов. Сколькими способами можно рассадить в поезде 4 человека, при условии, что все они должны ехать в различных вагонах?
Задача 4. В группе 9 человек. Сколько можно образовать разных подгрупп при условии, что в подгруппу входит не менее 2 человек?
Задача 5. Группу из 20 студентов нужно разделить на 3 бригады, причем в первую бригаду должны входить 3 человека, во вторую — 5 и в третью — 12. Сколькими способами это можно сделать.
Задача 6. Для участия в команде тренер отбирает 5 мальчиков из 10. Сколькими способами он может сформировать команду, если 2 определенных мальчика должны войти в команду?
Задача 7. В шахматном турнире принимали участие 15 шахматистов, причем каждый из них сыграл только одну партию с каждым из остальных. Сколько всего партий было сыграно в этом турнире?
Задача 9. Сколько слов можно получить, переставляя буквы в слове Гора и Институт?