Меню
Разработки
Разработки  /  Информатика  /  Проверочные работы  /  10 класс  /  Практическая работа по информатике "Системы счисления"

Практическая работа по информатике "Системы счисления"

Практическая работа содержит описание теоретического материла и задания на самостоятельное выполнение с примерным решением и описанием правил перевода.
30.12.2014

Описание разработки

Цель работы – приобретение навыков выполнения операций в различных системах счисления.

Основные понятия систем счисления

Система счисления — это совокупность правил и приемов записи чисел с помощью набора цифровых знаков. Количество цифр, необходимых для записи числа в системе, называют основанием системы счисления.

Основание системы записывается в справа числа в нижнем индексе:     .

Различают два типа систем счисления:

позиционные, когда значение каждой цифры числа определяется ее позицией в записи числа;

непозиционные, когда значение цифры в числе не зависит от ее места в записи числа.

Примером непозиционной системы счисления является римская: числа IX, IV, XV и т. д. Примером позиционной системы счисления является десятичная система, используемая повседневно.

Практическая работа по информатике Системы счисления

В вычислительных машинах используется двоичная система счисления, её основание — число 2. Для записи чисел в этой системе используют только две цифры — 0 и 1.

Весь материал – смотрите документ.

Содержимое разработки

4



Практическая РАБОТА по Теме: «Системы счисления. Перевод чисел из одной системы счисления в другую»


Цель работы – приобретение навыков выполнения операций в различных системах счисления.

  1. Основные понятия систем счисления

Система счисления — это совокупность правил и приемов записи чисел с помощью набора цифровых знаков. Количество цифр, необходимых для записи числа в системе, называют основанием системы счисления.

Основание системы записывается в справа числа в нижнем индексе: .

Различают два типа систем счисления:

  • позиционные, когда значение каждой цифры числа определяется ее позицией в записи числа;

  • непозиционные, когда значение цифры в числе не зависит от ее места в записи числа.

Примером непозиционной системы счисления является римская: числа IX, IV, XV и т.д. Примером позиционной системы счисления является десятичная система, используемая повседневно.

Любое целое число в позиционной системе можно записать в форме многочлена:

,

где — основание системы счисления;

— цифры числа, записанного в данной системе счисления;

n — количество разрядов числа.

Пример. Число запишется в форме многочлена следующим образом:

В вычислительных машинах используется двоичная система счисления, её основание — число 2. Для записи чисел в этой системе используют только две цифры — 0 и 1.

Таблица 1. Соответствие чисел, записанных в различных системах счисления

Десятичная

Двоичная

Восьмеричная

Шестнадцатеричная

1

001

1

1

2

010

2

2

3

011

3

3

4

100

4

4

5

101

5

5

6

110

6

6

7

111

7

7

8

1000

10

8

9

1001

11

9

10

1010

12

A

11

1011

13

B

12

1100

14

C

13

1101

15

D

14

1110

16

E

15

1111

17

F

16

10000

20

10

  1. Правила перевода чисел из одной системы счисления в другую

Перевод чисел из одной системы счисления в другую составляет важную часть машинной арифметики. Рассмотрим основные правила перевода.

  1. Для перевода двоичного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 2, и вычислить по правилам десятичной арифметики:

При переводе удобно пользоваться таблицей степеней двойки:

Таблица 2. Степени числа 2

n

0

1

2

3

4

5

6

7

8

9

10

1

2

4

8

16

32

64

128

256

512

1024

Пример. Число перевести в десятичную систему счисления.

Переведите самостоятельно: 110111012; 1100010112.

  1. Для перевода восьмеричного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 8, и вычислить по правилам десятичной арифметики:

При переводе удобно пользоваться таблицей степеней восьмерки:

Таблица 3.4. Степени числа 8

n

0

1

2

3

4

5

6

1

8

64

512

4096

32768

262144


Пример. Число перевести в десятичную систему счисления.

Переведите самостоятельно: 358 ; 658 ; 2158 ; 3278


  1. Для перевода шестнадцатеричного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 16, и вычислить по правилам десятичной арифметики:

При переводе удобно пользоваться таблицей степеней числа 16:

Таблица 3. Степени числа 16

n

0

1

2

3

4

5

6

1

16

256

4096

65536

1048576

16777216


Пример. Число перевести в десятичную систему счисления.

Переведите самостоятельно: D816 ; 1AE16 ; E5716 ; 8E516


  1. Для перевода десятичного числа в двоичную систему его необходимо последовательно делить на 2 до тех пор, пока не останется остаток, меньший или равный 1. Число в двоичной системе записывается как последовательность последнего результата деления и остатков от деления в обратном порядке.

Пример. Число перевести в двоичную систему счисления.

Переведите самостоятельно: 165; 541; 600; 720


  1. Для перевода десятичного числа в восьмеричную систему его необходимо последовательно делить на 8 до тех пор, пока не останется остаток, меньший или равный 7. Число в восьмеричной системе записывается как последовательность цифр последнего результата деления и остатков от деления в обратном порядке.



Пример. Число перевести в восьмеричную систему счисления.

Переведите самостоятельно: 69; 73; 113; 203


  1. Для перевода десятичного числа в шестнадцатеричную систему его необходимо последовательно делить на 16 до тех пор, пока не останется остаток, меньший или равный 15. Число в шестнадцатеричной системе записывается как последовательность цифр последнего результата деления и остатков от деления в обратном порядке.

Пример. Число перевести в шестнадцатеричную систему счисления.

Переведите самостоятельно: 113; 203; 351; 641


  1. Чтобы перевести число из двоичной системы в восьмеричную, его нужно разбить на триады (тройки цифр), начиная с младшего разряда, в случае необходимости дополнив старшую триаду нулями, и каждую триаду заменить соответствующей восьмеричной цифрой (табл. 3).

Пример. Число перевести в восьмеричную систему счисления.

Переведите самостоятельно: 1001011102; 1000001112


  1. Чтобы перевести число из двоичной системы в шестнадцатеричную, его нужно разбить на тетрады (четверки цифр), начиная с младшего разряда, в случае необходимости дополнив старшую тетраду нулями, и каждую тетраду заменить соответствующей восьмеричной цифрой (табл. 3).

Пример. Число перевести в шестнадцатеричную систему счисления.

Переведите самостоятельно: 1110010112; 10110010112


  1. Для перевода восьмеричного числа в двоичное необходимо каждую цифру заменить эквивалентной ей двоичной триадой.

Пример. Число перевести в двоичную систему счисления.

Переведите самостоятельно: 648; 4538; 738; 513


  1. Для перевода шестнадцатеричного числа в двоичное необходимо каждую цифру заменить эквивалентной ей двоичной тетрадой.

Пример. Число перевести в двоичную систему счисления.

Переведите самостоятельно: ABC16; F0B16


  1. При переходе из восьмеричной системы счисления в шестнадцатеричную и обратно, необходим промежуточный перевод чисел в двоичную систему.

Пример 1. Число перевести в восьмеричную систему счисления.

Переведите самостоятельно: 2EA16; FCE16


Пример 2. Число перевести в шестнадцатеричную систему счисления.

Переведите самостоятельно: 7638; 7658

-80%
Курсы повышения квалификации

Профессиональная компетентность педагогов в условиях внедрения ФГОС

Продолжительность 72 часа
Документ: Удостоверение о повышении квалификации
4000 руб.
800 руб.
Подробнее
Скачать разработку
Сохранить у себя:
Практическая работа по информатике "Системы счисления" (0.13 MB)

Комментарии 0

Чтобы добавить комментарий зарегистрируйтесь или на сайт