Меню
Разработки
Разработки  /  Математика  /  Разное  /  Прочее  /  Метод проб и ошибок

Метод проб и ошибок

При решении текстовых задач многие учащиеся испытывают затруднения. Главная задача учителя научить решать ученика различные типы текстовых задач. Процесс решения текстовых задач развивает у учащихся логическое мышление, учат находить выход из проблем реальной жизни, дает почувствовать уверенность в своих силах.

29.10.2017

Содержимое разработки

Метод проб и ошибок

в решении текстовых задач.


При решении текстовых задач многие учащиеся испытывают затруднения. Главная задача учителя научить решать ученика различные типы текстовых задач. Процесс решения текстовых задач развивает у учащихся логическое мышление, учат находить выход из проблем реальной жизни, дает почувствовать уверенность в своих силах.

Текстовые задачи можно разбить на два основных класса:

  • текстовые арифметические задачи;

  • текстовые задачи на составление уравнений.

Причем это разделение довольно условно. Многие текстовые арифметические задачи можно решить с помощью уравнений, а задачи на составление уравнений (систем уравнений) часто решают по действиям, а если это не получается, то используют метод проб и ошибок или метод перебора.

Мне бы хотелось продемонстрировать решение ряда задач этими методами.

Задача №1

Одна сторона прямоугольного участка земли на 3 м больше другой его стороны. Площадь участка равна 70 м². Найти размеры этого участка.


Пусть x м ширина участка, (x+3) м – длина участка, а площадь x·(x+3) м²,

что по условию задачи равно 70 м². Чтобы найти размеры участка надо составить уравнение x·(x+3)=70 и решить его. Но в 5ом классе такие учащиеся решать еще не могут. Поэтому попробуем подобрать решение «экспериментально», так называемым методом проб и ошибок.

  1. пусть x=4, т.е. 4·(4+3)=28, 28≠70;

  2. x=6, т.е. 6·(6+3)=54, 54≠70;

  3. x=7, т.е. 7·(7+3)=70, 70=70 верно.

Т.е. мы увидели, что метод проб и ошибок позволяет найти ответ даже в случае, когда математический модель представляет собой новый, не изученный еще объект. Но, решая задачи этим способом, следует помнить, что подбор одного решения не гарантирует полноты решения. Поэтому необходимы обоснования того, что найдены все возможные решения.

В нашей задаче, если бы x было больше 7,то x+310 и x·(x+3)70, если наоборот xx+3 x·(x+3)







Задачи для учащихся.


Переведи условие задачи на математический язык и найди решение методом проб и ошибок.

  1. Площадь прямоугольника равна 68 дм², а длина больше ширины на 13 дм. Каковы стороны этого прямоугольника?

  2. Ширина прямоугольника на 9 см меньше длины, а площадь равна 90 см². Найти стороны прямоугольника.

  3. Найти периметр прямоугольника, площадь которого составляет 18 м², а ширина в 2 раза меньше длины.

  4. Площадь прямоугольника равна 64 дм², а его длина в 4 раза больше ширины. Чему равен периметр прямоугольника?

  5. Длину прямоугольника уменьшили на 3 см, а ширину увеличили на 4 см и получили квадрат. Найти сторону квадрата, если площадь прямоугольника равна 30 см².

  6. После того как ширину прямоугольника увеличили на 1 м, а длину уменьшили на 5 м, получили квадрат. Чему равна площадь квадрата, если площадь прямоугольника 91 м².

  7. Длина прямоугольника на 5 м больше ширины, а площадь составляет 24 м². каковы стороны этого прямоугольника?

  8. Длину прямоугольника уменьшили в 2 раза, а ширину увеличили на 1 дм и получили квадрат. Найти сторону квадрата, если площадь прямоугольника 60 дм².

  9. Найти периметр прямоугольника, у которого ширина на 4 см меньше длины, а площадь составляет 32 см².

10)Одна из сторон прямоугольника на 20 см больше другой. Если

большую сторону уменьшить в 3 раза, а меньшую сторону увеличить

в 2 раза, то площадь нового прямоугольника будет равна 200 см².

Найти стороны данного прямоугольника.


Метод перебора при

нахождении НОД.


Рассмотрим еще один метод – метод перебора. Т.к. предыдущий метод решения задач – метод проб и ошибок не дает уверенности в том, что найдены все искомые значения. Поэтому для обоснования полноты решения требуются дополнительные, иногда очень непростые рассуждения. В этом недостаток метода проб и ошибок. Но он исключен в методе полного перебора.

Полный перебор требует, как правило, больших усилий и большого времени. Однако внимательный анализ условия часто позволяет найти систему перебора, охватывающую все возможные варианты, но более короткую, чем «лобовой» перебор.


Задача. На экскурсию едут 252 ученика школы. Для них заказаны

несколько автобусов. Однако выяснилось, что если заказать

автобусы, вмещающие на 6 человек больше, то автобусов

потребуется на один меньше. Сколько больших автобусов надо

заказать?


Составим таблицу.


Кол-во детей в одном автобусе

Количество автобусов

Общее кол-во детей

Большие автобусы

252 : x

x

252

Маленькие автобусы

252 : (x+1)

x+1

252

Т.к. по условию в большой автобус вмещается на 6 детей больше, чем в маленький, то разность 252 : x - 252 : (x+1) = 6. Значит решением задачи является число X, удовлетворяющее равенству: 252 : x - 252 : (x+1) = 6.

Но можно получить более простую математическую модель этой задачи, обозначив дополнительно буквой Y число детей, которых можно разместить в большом автобусе.


Кол-во детей в одном автобусе

Количество автобусов

Общее кол-во детей

Большие автобусы

y

x

252

Маленькие автобусы

y-6

x+1

252

Очевидно, что в этом случае математической моделью задачи являются два равенства:

  1. xy = 252;

  2. (x+1)·(y-6) = 252.


Искомые числа x и y должны удовлетворять как первому, так и

второму равенству. Найдем эти числа x и y.

Из равенства xy = 252 можно заметить, что числа x и y не могут быть

больше, чем 252. Однако и в этом случае «лобовой» перебор потребовал бы рассмотрения огромного числа вариантов. Но более внимательный анализ первого равенства показывает, что числа x и y – это парные делители 252: при делении 252 на x получается y, и наоборот. Следовательно, достаточно рассмотреть лишь парные делители числа 252, причем для случая, когда y6 (y-60).

Составим таблицу:


+1

x

1

2

3

4

6

7

9

14

18

28

36

y

252

126

84

63

42

36

28

18

14

9

7

- 6

Анализ второго равенства позволяет еще больше сократить число возможных вариантов. Оно означает, что число (x+1) и (y-6) так же являются парными делителями 252. Из таблицы видно, что такими свойствами обладает только пара x=6, y=42.

Ответ: для экскурсии надо заказать 6 больших автобусов.


Задачи для учащихся.

  1. Сумма цифр двузначного числа равна 15. Если эти цифры поменять местами, то получится число, которое на 27 меньше исходного. Найти эти числа.

  2. Сумма цифр двузначного числа равна 12. число, записанное теми же цифрами, но в обратном порядке, составляет 4 /7 исходного числа. Найти эти числа.

  3. Одно из двух натуральных чисел на 4 больше другого. Найди эти числа, если их произведение равно 96.

  4. У причала находилось 6 лодок, часть из которых была двухместными, а часть трехместными. Всего в эти лодки может поместиться 14 человек. Сколько двухместных и трехместных лодок было у причала?

  5. Прямоугольный газон обнесен изгородью, длинна которой 30 м. Площадь газона 56 м². Найди длины газона, если известно, что они выражаются натуральными числами.

  6. В несколько посылок упаковали 36 книг и 54 журнала, распределив их между посылками поровну. В каждой посылке книг на 2 меньше, чем журналов. Сколько получилось посылок?

  7. Произведение двух натуральных чисел равно 72. Найти эти числа, если одно из них больше другого на 6.

  8. На турбазе имеются палатки и домики, общее число которых равно 25. в каждом домике живут 4 человека, а в палатке – 2 человека. Сколько на турбазе палаток и сколько домиков, если всего на этой турбазе отдыхают 70 человек?

  9. Прямоугольный участок земли обнесен забором, длина которого 40 м. Площадь участка 96 м². Найти длины сторон этого участка, если известно, что они выражаются натуральными числами.


Еще один тип задач, которые решаются методом перебора.


Задумано двузначное число, которое на 52 больше произведения своих цифр. Какое число задумано?

Пусть xy – задуманное двузначное число, где x – цифра десятков, а y – цифра единиц. Тогда их произведение равно xy. Само двузначное число можно записать как 10x+y. По условию 10x+y на 52 больше произведения своих цифр xy. Т.е. должно выполняться равенство 10x+y= xy+52, которое является математической моделью данной задачи.

Решается это уравнение методом перебора. Полный перебор можно провести, рассматривая последовательно все значения x от 1 до 9 и подбирая в каждом случае соответствующее значение y от 0 до 9.

Однако этот перебор можно сократить, если заметить, что первая часть данного равенства больше 52. Значит, и первая его часть, т.е. задуманное число, больше 52. Поэтому неизвестное число x не меньше 5, и можно рассматривать только пять значений x – от 5 до 9.

При x=5 будем иметь равенство 50+y=5y+52, оно невозможно, т.к. 50+yy+52.

При x=6 60+y=6y+52 | -y

60=5y+52

5y=8 невозможно для натурального y.

При x=7 70+y=7y+52

70=6y+52

6y=18

y=3 Число 73

При x=8 80+y=8y+52

80=7y+52

7y=28

y=4 Число 87

При x=9 90+y=9y+52

38=8y невозможно


Таким образом, задумано либо 73, либо 84.

Условие задачи не дает возможности ответить на этот вопрос. Поэтому два ответа: 73 или 84.


Задачи для учащихся.


Метод перебора используется при доказательстве общих утверждений, где необходимо вводить буквенные обозначения.

Например: Доказать, что сумма любых трех последовательных натуральных чисел делится на 3.

1 сл. 1,2,3 1+2+3=6, 6:3=2

2 сл. 5,6,7 5+6+7=18, 18:3=6

3 сл. 21,22,23 21+22+23=66 66:3=22

и т.д.

Возьмем произведение натурального числа и обозначим его n. Тогда следующие за ним два числа соответственно равны n+1 и n+2.

Их сумма: n+(n+1)+(n+2)=3n+3=3(n+1) делится на 3, т.к. один из множителей делится на 3.


-80%
Курсы повышения квалификации

Методика преподавания математики в соответствии с ФГОС ООО (СОО)

Продолжительность 72 часа
Документ: Удостоверение о повышении квалификации
4000 руб.
800 руб.
Подробнее
Скачать разработку
Сохранить у себя:
Метод проб и ошибок (63.5 KB)

Комментарии 0

Чтобы добавить комментарий зарегистрируйтесь или на сайт

Вы смотрели