Меню
Разработки
Разработки  /  Математика  /  Подготовка к ЕГЭ  /  11 класс  /  Материал по математике "Цифровая запись числа"

Материал по математике "Цифровая запись числа"

Разработка содержит 30 заданий, позволит проверить уровень знаний учащихся.
22.12.2015

Описание разработки

1. При­ве­ди­те при­мер трёхзнач­но­го числа, сумма цифр ко­то­ро­го равна 20, а сумма квад­ра­тов цифр де­лит­ся на 3, но не де­лит­ся на 9.

2. Най­ди­те трёхзнач­ное на­ту­раль­ное число, боль­шее 400, ко­то­рое при де­ле­нии на 6 и на 5 даёт рав­ные не­ну­ле­вые остат­ки и пер­вая слева цифра ко­то­ро­го яв­ля­ет­ся сред­ним ариф­ме­ти­че­ским двух дру­гих цифр. В от­ве­те ука­жи­те какое-ни­будь одно такое число.

3. Цифры четырёхзнач­но­го числа, крат­но­го 5, за­пи­са­ли в об­рат­ном по­ряд­ке и по­лу­чи­ли вто­рое четырёхзнач­ное число. Затем из пер­во­го числа вычли вто­рое и по­лу­чи­ли 4536. При­ве­ди­те ровно один при­мер та­ко­го числа.

4. Най­ди­те трёхзнач­ное число, сумма цифр ко­то­ро­го равна 25, если из­вест­но, что его квад­рат де­лит­ся на 16.

5. При­ве­ди­те при­мер четырёхзнач­но­го на­ту­раль­но­го числа, крат­но­го 4, сумма цифр ко­то­ро­го равна их про­из­ве­де­нию. В от­ве­те ука­жи­те ровно одно такое число.

6. Най­ди­те наи­мень­шее четырёхзнач­ное число, крат­ное 11, у ко­то­ро­го про­из­ве­де­ние его цифр равно 12.

В от­ве­те ука­жи­те наи­мень­шее такое число.

7. Най­ди­те четырёхзнач­ное на­ту­раль­ное число, крат­ное 19, сумма цифр ко­то­ро­го на 1 боль­ше их про­из­ве­де­ния.

8. Най­ди­те наи­мень­шее пя­ти­знач­ное число, крат­ное 55, про­из­ве­де­ние цифр ко­то­ро­го боль­ше 50, но мень­ше 75.

9. Най­ди­те ше­сти­знач­ное на­ту­раль­ное число, ко­то­рое за­пи­сы­ва­ет­ся толь­ко циф­ра­ми 1 и 0 и де­лит­ся на 24.

10. Най­ди­те наи­мень­шее трёхзнач­ное число, ко­то­рое при де­ле­нии на 2 даёт оста­ток 1, при де­ле­нии на 3 даёт оста­ток 2, при де­ле­нии на 5 даёт оста­ток 3 и ко­то­рое за­пи­са­но тремя раз­лич­ны­ми нечётными циф­ра­ми.

11. Най­ди­те наи­мень­шее трёхзнач­ное на­ту­раль­ное число, ко­то­рое при де­ле­нии на 6 и на 11 даёт рав­ные не­ну­ле­вые остат­ки и у ко­то­ро­го сред­няя цифра яв­ля­ет­ся сред­ним ариф­ме­ти­че­ским двух край­них цифр.

12. Сумма цифр трёхзнач­но­го на­ту­раль­но­го числа А де­лит­ся на 12. Сумма цифр числа (А + 6) также де­лит­ся на 12. Най­ди­те наи­мень­шее воз­мож­ное число А.

13. Сумма цифр трёхзнач­но­го числа A де­лит­ся на 13. Сумма цифр числа A+5 также де­лит­ся на 13. Най­ди­те такое число A.

14. Вы­черк­ни­те в числе 123456 три цифры так, чтобы по­лу­чив­ше­е­ся трёхзнач­ное число де­ли­лось на 27. В от­ве­те ука­жи­те по­лу­чив­ше­е­ся число.

15. Вы­черк­ни­те в числе 141565041 три цифры так, чтобы по­лу­чив­ше­е­ся число де­ли­лось на 30. В от­ве­те ука­жи­те ровно одно по­лу­чив­ше­е­ся число.

16. Вы­черк­ни­те в числе 74513527 три цифры так, чтобы по­лу­чив­ше­е­ся число де­ли­лось на 15. В от­ве­те ука­жи­те ровно одно по­лу­чив­ше­е­ся число.

17. Вы­черк­ни­те в числе 85417627 три цифры так, чтобы по­лу­чив­ше­е­ся число де­ли­лось на 18. В от­ве­те ука­жи­те ровно одно по­лу­чив­ше­е­ся число.

18. Вы­черк­ни­те в числе 181615121 три цифры так, чтобы по­лу­чив­ше­е­ся число де­ли­лось на 12. В от­ве­те ука­жи­те какое-ни­будь одно такое число.

Материал по математике Цифровая запись числа

19. Най­ди­те трех­знач­ное на­ту­раль­ное число, боль­шее 500, ко­то­рое при де­ле­нии на 4, на 5 и на 6 дает в остат­ке 2, и в за­пи­си ко­то­ро­го есть толь­ко две раз­лич­ные цифры. В от­ве­те ука­жи­те какое-ни­будь одно такое число.

20. Най­ди­те трех­знач­ное на­ту­раль­ное число, боль­шее 600, ко­то­рое при де­ле­нии на 4, на 5 и на 6 дает в остат­ке 3, и цифры ко­то­ро­го рас­по­ло­же­ны в по­ряд­ке убы­ва­ния слева на­пра­во. В от­ве­те ука­жи­те какое-ни­будь одно такое число.

21. Най­ди­те трёхзнач­ное число A, об­ла­да­ю­щее всеми сле­ду­ю­щи­ми свой­ства­ми:

- сумма цифр числа A де­лит­ся на 8;

- сумма цифр числа A + 1 де­лит­ся на 8;

- в числе A сумма край­них цифр крат­на сред­ней цифре.

В от­ве­те ука­жи­те какое-ни­будь одно такое число.

22. Най­ди­те четырёхзнач­ное число, крат­ное 88, все цифры ко­то­ро­го раз­лич­ны и чётны. В от­ве­те ука­жи­те какое-ни­будь одно такое число.

23. Трёхзнач­ное число при де­ле­нии на 10 даёт в остат­ке 3. Если по­след­нюю цифру числа пе­ре­не­сти в на­ча­ло его за­пи­си, то по­лу­чен­ное число будет на 72 боль­ше пер­во­на­чаль­но­го. Най­ди­те ис­ход­ное число.

24. При­ве­ди­те при­мер четырёхзнач­но­го числа А, об­ла­да­ю­ще­го сле­ду­ю­щи­ми свой­ства­ми:

1) сумма цифр числа А де­лит­ся на 8;

2) сумма цифр числа (А + 2) также де­лит­ся на 8;

3) число А мень­ше 3000.

В от­ве­те ука­жи­те ровно одно такое число.

25. При­ве­ди­те при­мер ше­сти­знач­но­го на­ту­раль­но­го числа, ко­то­рое за­пи­сы­ва­ет­ся толь­ко циф­ра­ми 1 и 2 и де­лит­ся на 24. В от­ве­те ука­жи­те ровно одно такое число.

26. При­ве­ди­те при­мер ше­сти­знач­но­го на­ту­раль­но­го числа, ко­то­рое за­пи­сы­ва­ет­ся толь­ко циф­ра­ми 2 и 0 и де­лит­ся на 24. В от­ве­те ука­жи­те ровно одно такое число.

27. При­ве­ди­те при­мер ше­сти­знач­но­го на­ту­раль­но­го числа, ко­то­рое за­пи­сы­ва­ет­ся толь­ко циф­ра­ми 1 и 2 и де­лит­ся на 72. В от­ве­те ука­жи­те ровно одно такое число.

28. При­ве­ди­те при­мер трёхзнач­но­го на­ту­раль­но­го числа, боль­ше­го 500, ко­то­рое при де­ле­нии на 8 и на 5 даёт рав­ные не­ну­ле­вые остат­ки и пер­вая слева цифра ко­то­ро­го яв­ля­ет­ся сред­ним ариф­ме­ти­че­ским двух дру­гих цифр. В от­ве­те ука­жи­те ровно одно такое число.

29.При­ве­ди­те при­мер трёхзнач­но­го на­ту­раль­но­го числа, боль­ше­го 600, ко­то­рое при де­ле­нии на 4, на 5 и на 6 даёт в остат­ке 3 и цифры ко­то­ро­го рас­по­ло­же­ны в по­ряд­ке убы­ва­ния слева на­пра­во. В от­ве­те ука­жи­те ровно одно такое число.

30. При­ве­ди­те при­мер трёхзнач­но­го на­ту­раль­но­го числа, боль­ше­го 500, ко­то­рое при де­ле­нии на 3, на 4 и на 5 даёт в остат­ке 2 и в за­пи­си ко­то­ро­го есть толь­ко две раз­лич­ные цифры. В от­ве­те ука­жи­те ровно одно такое число.

Содержимое разработки

Цифровая за­пись числа

1. При­ве­ди­те при­мер трёхзнач­но­го числа, сумма цифр ко­то­ро­го равна 20, а сумма квад­ра­тов цифр де­лит­ся на 3, но не де­лит­ся на 9.

2. Най­ди­те трёхзнач­ное на­ту­раль­ное число, боль­шее 400, ко­то­рое при де­ле­нии на 6 и на 5 даёт рав­ные не­ну­ле­вые остат­ки и пер­вая слева цифра ко­то­ро­го яв­ля­ет­ся сред­ним ариф­ме­ти­че­ским двух дру­гих цифр. В от­ве­те ука­жи­те какое-ни­будь одно такое число.

3. Цифры четырёхзнач­но­го числа, крат­но­го 5, за­пи­са­ли в об­рат­ном по­ряд­ке и по­лу­чи­ли вто­рое четырёхзнач­ное число. Затем из пер­во­го числа вычли вто­рое и по­лу­чи­ли 4536. При­ве­ди­те ровно один при­мер та­ко­го числа.

4. Най­ди­те трёхзнач­ное число, сумма цифр ко­то­ро­го равна 25, если из­вест­но, что его квад­рат де­лит­ся на 16.

5. При­ве­ди­те при­мер четырёхзнач­но­го на­ту­раль­но­го числа, крат­но­го 4, сумма цифр ко­то­ро­го равна их про­из­ве­де­нию. В от­ве­те ука­жи­те ровно одно такое число.

6. Най­ди­те наи­мень­шее четырёхзнач­ное число, крат­ное 11, у ко­то­ро­го про­из­ве­де­ние его цифр равно 12.

В от­ве­те ука­жи­те наи­мень­шее такое число.

7. Най­ди­те четырёхзнач­ное на­ту­раль­ное число, крат­ное 19, сумма цифр ко­то­ро­го на 1 боль­ше их про­из­ве­де­ния.

8. Най­ди­те наи­мень­шее пя­ти­знач­ное число, крат­ное 55, про­из­ве­де­ние цифр ко­то­ро­го боль­ше 50, но мень­ше 75.

9. Най­ди­те ше­сти­знач­ное на­ту­раль­ное число, ко­то­рое за­пи­сы­ва­ет­ся толь­ко циф­ра­ми 1 и 0 и де­лит­ся на 24.

10. Най­ди­те наи­мень­шее трёхзнач­ное число, ко­то­рое при де­ле­нии на 2 даёт оста­ток 1, при де­ле­нии на 3 даёт оста­ток 2, при де­ле­нии на 5 даёт оста­ток 3 и ко­то­рое за­пи­са­но тремя раз­лич­ны­ми нечётными циф­ра­ми.

11. Най­ди­те наи­мень­шее трёхзнач­ное на­ту­раль­ное число, ко­то­рое при де­ле­нии на 6 и на 11 даёт рав­ные не­ну­ле­вые остат­ки и у ко­то­ро­го сред­няя цифра яв­ля­ет­ся сред­ним ариф­ме­ти­че­ским двух край­них цифр.

12. Сумма цифр трёхзнач­но­го на­ту­раль­но­го числа А де­лит­ся на 12. Сумма цифр числа (А + 6) также де­лит­ся на 12. Най­ди­те наи­мень­шее воз­мож­ное число А.

13. Сумма цифр трёхзнач­но­го числа A де­лит­ся на 13. Сумма цифр числа A+5 также де­лит­ся на 13. Най­ди­те такое число A.

14. Вы­черк­ни­те в числе 123456 три цифры так, чтобы по­лу­чив­ше­е­ся трёхзнач­ное число де­ли­лось на 27. В от­ве­те ука­жи­те по­лу­чив­ше­е­ся число.

15. Вы­черк­ни­те в числе 141565041 три цифры так, чтобы по­лу­чив­ше­е­ся число де­ли­лось на 30. В от­ве­те ука­жи­те ровно одно по­лу­чив­ше­е­ся число.

16. Вы­черк­ни­те в числе 74513527 три цифры так, чтобы по­лу­чив­ше­е­ся число де­ли­лось на 15. В от­ве­те ука­жи­те ровно одно по­лу­чив­ше­е­ся число.

17. Вы­черк­ни­те в числе 85417627 три цифры так, чтобы по­лу­чив­ше­е­ся число де­ли­лось на 18. В от­ве­те ука­жи­те ровно одно по­лу­чив­ше­е­ся число.

18. Вы­черк­ни­те в числе 181615121 три цифры так, чтобы по­лу­чив­ше­е­ся число де­ли­лось на 12. В от­ве­те ука­жи­те какое-ни­будь одно такое число.

19. Най­ди­те трех­знач­ное на­ту­раль­ное число, боль­шее 500, ко­то­рое при де­ле­нии на 4, на 5 и на 6 дает в остат­ке 2, и в за­пи­си ко­то­ро­го есть толь­ко две раз­лич­ные цифры. В от­ве­те ука­жи­те какое-ни­будь одно такое число.

20. Най­ди­те трех­знач­ное на­ту­раль­ное число, боль­шее 600, ко­то­рое при де­ле­нии на 4, на 5 и на 6 дает в остат­ке 3, и цифры ко­то­ро­го рас­по­ло­же­ны в по­ряд­ке убы­ва­ния слева на­пра­во. В от­ве­те ука­жи­те какое-ни­будь одно такое число.

21. Най­ди­те трёхзнач­ное число A, об­ла­да­ю­щее всеми сле­ду­ю­щи­ми свой­ства­ми:

 · сумма цифр числа A де­лит­ся на 8;

 · сумма цифр числа A + 1 де­лит­ся на 8;

 · в числе A сумма край­них цифр крат­на сред­ней цифре.

В от­ве­те ука­жи­те какое-ни­будь одно такое число.

22. Най­ди­те четырёхзнач­ное число, крат­ное 88, все цифры ко­то­ро­го раз­лич­ны и чётны. В от­ве­те ука­жи­те какое-ни­будь одно такое число.

23. Трёхзнач­ное число при де­ле­нии на 10 даёт в остат­ке 3. Если по­след­нюю цифру числа пе­ре­не­сти в на­ча­ло его за­пи­си, то по­лу­чен­ное число будет на 72 боль­ше пер­во­на­чаль­но­го. Най­ди­те ис­ход­ное число.

24. При­ве­ди­те при­мер четырёхзнач­но­го числа А, об­ла­да­ю­ще­го сле­ду­ю­щи­ми свой­ства­ми:

1) сумма цифр числа А де­лит­ся на 8;

2) сумма цифр числа (А + 2) также де­лит­ся на 8;

3) число А мень­ше 3000.

В от­ве­те ука­жи­те ровно одно такое число.

25. При­ве­ди­те при­мер ше­сти­знач­но­го на­ту­раль­но­го числа, ко­то­рое за­пи­сы­ва­ет­ся толь­ко циф­ра­ми 1 и 2 и де­лит­ся на 24. В от­ве­те ука­жи­те ровно одно такое число.

26. При­ве­ди­те при­мер ше­сти­знач­но­го на­ту­раль­но­го числа, ко­то­рое за­пи­сы­ва­ет­ся толь­ко циф­ра­ми 2 и 0 и де­лит­ся на 24. В от­ве­те ука­жи­те ровно одно такое число.

27. При­ве­ди­те при­мер ше­сти­знач­но­го на­ту­раль­но­го числа, ко­то­рое за­пи­сы­ва­ет­ся толь­ко циф­ра­ми 1 и 2 и де­лит­ся на 72. В от­ве­те ука­жи­те ровно одно такое число.

28. При­ве­ди­те при­мер трёхзнач­но­го на­ту­раль­но­го числа, боль­ше­го 500, ко­то­рое при де­ле­нии на 8 и на 5 даёт рав­ные не­ну­ле­вые остат­ки и пер­вая слева цифра ко­то­ро­го яв­ля­ет­ся сред­ним ариф­ме­ти­че­ским двух дру­гих цифр. В от­ве­те ука­жи­те ровно одно такое число.

29.При­ве­ди­те при­мер трёхзнач­но­го на­ту­раль­но­го числа, боль­ше­го 600, ко­то­рое при де­ле­нии на 4, на 5 и на 6 даёт в остат­ке 3 и цифры ко­то­ро­го рас­по­ло­же­ны в по­ряд­ке убы­ва­ния слева на­пра­во. В от­ве­те ука­жи­те ровно одно такое число.

30. При­ве­ди­те при­мер трёхзнач­но­го на­ту­раль­но­го числа, боль­ше­го 500, ко­то­рое при де­ле­нии на 3, на 4 и на 5 даёт в остат­ке 2 и в за­пи­си ко­то­ро­го есть толь­ко две раз­лич­ные цифры. В от­ве­те ука­жи­те ровно одно такое число.



-80%
Курсы повышения квалификации

Организация и сопровождение олимпиадной деятельности учащихся

Продолжительность 72 часа
Документ: Удостоверение о повышении квалификации
4000 руб.
800 руб.
Подробнее
Скачать разработку
Сохранить у себя:
Материал по математике "Цифровая запись числа" (18.12 КB)

Комментарии 0

Чтобы добавить комментарий зарегистрируйтесь или на сайт