При изучении десятичных дробей мы отдельно рассмотрели бесконечные непериодические десятичные дроби. Такие дроби возникают при десятичном измерении длин отрезков, несоизмеримых с единичным отрезком. Также мы отметили, что бесконечные непериодические десятичные дроби не могут быть переведены в обыкновенные дроби (смотрите перевод обыкновенных дробей в десятичные и обратно), следовательно, эти числа не являются рациональными числами, они представляют так называемые иррациональные числа.
Так мы подошли к определению иррациональных чисел.
Определение.
Числа, которые в десятичной записи представляют собой бесконечные непериодические десятичные дроби, называются иррациональными числами.
Озвученное определение позволяет привести примеры иррациональных чисел. Например, бесконечная непериодическая десятичная дробь 4, 10110011100011110000… (количество единиц и нулей каждый раз увеличивается на одну) является иррациональным числом. Приведем еще пример иррационального числа: −22, 353335333335… (число троек, разделяющих восьмерки, каждый раз увеличивается на две).
Следует отметить, что иррациональные числа достаточно редко встречаются именно в виде бесконечных непериодических десятичных дробей. Обычно они встречаются в виде корней, степеней, логарифмов и т. п., а также в виде специально введенных букв. Самыми известными примерами иррациональных чисел в такой записи являются арифметический квадратный корень из двух, число «пи» π=3, 141592…, число e=2, 718281… и золотое число.
Иррациональные числа также можно определить через действительные числа, которые объединяют рациональные и иррациональные числа.
Определение.
Иррациональные числа – это действительные числа, не являющиеся рациональными.
К началу страницы
Является ли данное число иррациональным?
Когда число задано не в виде десятичной дроби, а в виде некоторого числового выражения, корня, логарифма и т. п., то ответить на вопрос, является ли оно иррациональным, во многих случаях достаточно сложно.
Несомненно, при ответе на поставленный вопрос очень полезно знать, какие числа не являются иррациональными. Из определения иррациональных чисел следует, что иррациональными числами не являются рациональные числа. Таким образом, иррациональными числами НЕ являются:
· натуральные числа;
· целые числа;
· обыкновенные дроби;
· смешанные числа;
· конечные и бесконечные периодические десятичные дроби.
Также не является иррациональным числом любая композиция рациональных чисел, связанных знаками арифметических операций (+, −, ·, :). Это объясняется тем, что сумма, разность, произведение и частное двух рациональных чисел является рациональным числом. Например, значения выражений и являются рациональными числами. Здесь же заметим, что если в подобных выражениях среди рациональных чисел содержится одно единственное иррациональное число, то значение всего выражения будет иррациональным числом. Например, в выражении число - иррациональное, а остальные числа рациональные, следовательно - иррациональное число. Если бы было рациональным числом, то из этого следовала бы рациональность числа, а оно не является рациональным.
Полную информацию смотрите в файле.