Меню
Разработки
Разработки  /  Начальные классы  /  Уроки  /  4 класс  /  Доклад на тему: «СИСТЕМА РАБОТЫ НАД ТЕКСТОВОЙ АРИФМЕТИЧЕСКОЙ ЗАДАЧЕЙ В НАЧАЛЬНОЙ ШКОЛЕ. Виды анализа задачи».

Доклад на тему: «СИСТЕМА РАБОТЫ НАД ТЕКСТОВОЙ АРИФМЕТИЧЕСКОЙ ЗАДАЧЕЙ В НАЧАЛЬНОЙ ШКОЛЕ. Виды анализа задачи».

Система работы над задачей- значима для учащихся начальных классов.Как правильно анализировать данные задачи и вести разбор? Какие пути решения должны четко представлять учащиеся., алгоритм рассуждения при решении задачи и помощь в построении данного алгоритма.

17.01.2017

Содержимое разработки










«СИСТЕМА РАБОТЫ НАД ТЕКСТОВОЙ АРИФМЕТИЧЕСКОЙ ЗАДАЧЕЙ

В НАЧАЛЬНОЙ ШКОЛЕ. Виды анализа задачи».























с.Новоандреевка, 2017г.








«Ребёнок не должен получать готовых знаний, должен напрягать свой ум и волю, должен чувствовать себя соавтором в решении возникающих проблем». (В. В. Давыдов)



1 Теоретические аспекты опыта


Обучение детей самостоятельному анализу решения простых и составных задач волнует каждого учителя. Ключ к решению задачи - это прежде всего пошаговый анализ действий, которые необходимо выполнить для того, чтобы ответить на главный вопрос задачи.

Во время анализа устанавливается зависимость между данными и искомыми значениями величин.

Основные традиционные приёмы анализа задачи – это разбор от вопроса к числовым данным (анализ) и от числовых данных к вопросу ( синтез). Анализ – логический прием, состоящий в расчленении исследуемого объекта на составные элементы и исследовании каждого из них в отдельности. Он может использоваться многократно. Разбор задачи от вопроса к данным - это суждение, которое состоит в том, чтобы подобрать два числовых значения одной или разных величин таким образом, чтобы дать ответ на вопрос задачи. Одно из значений или оба могут быть неизвестными. Для их нахождения подбираются два других, и так продолжается процесс подбора, пока не приходим к известным числовым значениям величин. В результате такого разбора учащиеся устанавливают зависимость между числовыми значениями величин, расчленяют ее на простые задачи и составляют план ее решения

При аналитическом способе решения задачи выясняется, что нужно предварительно узнать, чтобы ответить на вопрос задачи. Чтобы помочь детям вести рассуждения аналитическим способом, можно использовать прием, называемый “деревом рассуждений”. Суть его состоит в том, что по ходу рассуждений строится схема, которая помогает увидеть, какие простые задачи следует выделить и каким будет план решения данной составной задачи.

Синтез – логическая операция установления связи между составными частями исследуемого объекта и изучения его как единого целого. Исследуемый объект называется в требовании задачи, а его элементы описываются в условии. Разбор задачи от числовых данных состоит в том, что к двум числовым данным подбирается вопрос, затем к следующим двум данным, одно из которых может быть результатом первого действия, подбирается следующий вопрос. И этот процесс продолжается, пока не будет получен ответ на вопрос задачи



Синтетический способ характеризуется тем, что основным вопросом при поиске решения задачи является вопрос о том, что можно найти по двум или нескольким известным в тексте задачи числовым значениям. По вновь полученным числовым значениям и другим известным в задаче данным вновь ищется ответ на вопрос, что можно узнать по этим значениям. И так до ответа на вопрос составной задачи. Иными словами, суть этого способа состоит в вычленении простой задачи из предложенной составной и решении ее.

Аналитико-синтетический метод. Значительно чаще, используется на практике, чем аналитический и синтетический методы. Он сочетает элементы и анализа и синтеза. Так при решении сложной задачи она с помощью синтеза разбивается на ряд более простых задач, а затем при помощи синтеза происходит соединение решений этих задач в единое целое. Обучение учащихся начальных классов рассмотренным методам поиска решения задач сводится к обучению их правильному формулированию вопросов, соответствующих аналитическому или синтетическому методу. При разборе задачи нового вида учитель должен в каждом отдельном случае поставить детям вопросы так, чтобы навести их на правильный или осознанный выбор арифметических действий.

2. Обратимся к практике.

Анализ задачи аналитическим способом. Будем идти от вопроса к данным.

ЗАДАЧА.
Лида нарисовала 4 домика, а Вова на 3 домика больше. Сколько домиков нарисовали дети ?

Составляем дерево рассуждения с пояснением:

Чтобы ответить на вопрос задачи необходимо знать 2 величины: сколько домиков нарисовала Лида и сколько нарисовал Вова. Сколько нарисовала Лида нам известно-4, а сколько нарисовал Вова неизвестно, но сказано что на 3 домика больше, вспомню на 3 больше значит столько же и еще з, поэтому к 4 прибавлю 3 , теперь зная величину сколько прочитал Вова и сколько прочитала Лида я отвечу на вопрос задачи.





АНАЛИЗ ЗАДАЧИ СИНТЕТИЧЕСКИМ СПОСОБОМ .


Начинаем от числовых данных.


Задача

В двух пачках 160 тетрадей, причем в одной из них на 20 тетрадей больше, чем в другой.

Сколько тетрадей в каждой пачке?

I ?

160т.

II ? 20т.

Составляем дерево рассуждения, сопровождая пояснением:

В задаче нам известны 2 величины : 160-сколько тетрадей в двух пачках и 20 на столько во второй больше, зная эти величины, найду третью: сколько тетрадей в двух пачках, если количество их равное, для этого 160 – 20, теперь мне известна величина сколько тетрадей в пачках при их равном количестве и величина 2 – сколько пачек тетрадей , разделим эти величины и узнаем сколько тетрадей в одной пачке при равном количестве тетрадей. Мы ответили лишь на один вопрос задачи : сколько тетрадей в одной пачке, чтобы узнать количество тетрадей во второй пачке прибавим 20 т.к. сказано,что во второй пачке на 20 тетрадей больше.

Таким образом, рассуждение можно строить двумя способами:

от вопроса задачи к числовым данным;

от числовых данных идти к вопросу;

Нужно помнить, что введение понятия «СОСТАВНАЯ ЗАДАЧА» вводится тогда, когда научились решать все виды простых задач.

Разбор составной задачи заканчивается составлением дерева рассуждения –

это объяснение того, что узнаем, выполнив то или иное действие, и указание по порядку арифметических действий.

Нужно обратить внимание и на то, что полный анализ задачи, решаемой в 4-5 действий , является многословным, забирает много времени. Здесь целесообразно использовать схему неполного анализа , при котором в условие задачи записываются не только числа, но и выражения, это

во-первых укорачивает условие задачи, а во-вторых,делает более прозрачный путь к её решению.


Рассмотрим задачу:

Птицефабрика должна отправить в магазины 6000 яиц. Она уже отправила 10 ящиков по 350 яиц и 4 ящика по 150 яиц. Сколько яиц осталось отправить в магазины?

Отправили – (350 х10) яиц

(150 х 4) яиц 6000 яиц

Осталось - ?

При этом рассуждаем: если было 10 ящиков по 350 яиц в каждом, то яиц было 350 × 10. Отправила также 4 ящика по 150 яиц, это составляет (150×4) яиц.

Выполняя анализ от вопроса, учащиеся рассуждают примерно так:

«Чтобы ответить на вопрос задачи, надо знать две величины : сколько всего яиц надо отправить (6 000 яиц) и сколько яиц птицефабрика уже отправила. Чтобы узнать, сколько яиц фабрика отправила, надо знать, сколько она отправила в первый и во второй раз. В первом вопросе узнаем, сколько птицефабрика отправила яиц в 10 ящиках, во втором – сколько она отправила яиц в 4 ящиках, в третьем – сколько она отправила всего яиц и в четвертом – сколько яиц осталось отправить».

Схемы полного (рис.1) и неполного (рис.2) анализа наглядно показывают преимущество и недостатки каждого из них.

?

?



350 Х10

150:4

?

6000

4

150

10

350

?

6000000

?

?





После анализа учащиеся самостоятельно записывают решение в форме математического выражения или по отдельным действиям. Для учащихся, которые затрудняются , ведется более подробный анализ.

Вывод


Такая работа, которая проводится в системе, способствует развитию учебной мотивации, большинству детей помогает видеть взаимосвязь между величинами, овладевать разными способами решения задач, т.е. способствует формированию математической компетентности.

Исследовательская деятельность помогает разнообразить деятельность детей на уроке, поддерживает интерес к математике и, главное, помогает им овладеть умением решать задачи. Конечно, подобный вид работы, требует больших затрат времени. Однако время, потраченное на них, окупается умением решать задачи не только на уровне государственных стандартов, но и нестандартные задачи. А самое главное у детей появляется желание решать задачи.


Вспомним старую притчу о том, как один мудрец бедняков накормил.

- Пришёл мудрец к бедным и сказал: «Я вижу, вы голодны. Давайте я дам вам рыбу, чтобы вы утолили голод». Но время прошло, и люди опять проголодались.

Притча гласит: «Не надо давать рыбу, следует научить ловить её»


Не надо давать готовый путь к решению, надо побуждать учащихся к действию, учить их анализировать, рассуждать и находить путь решения самостоятельно.





















Литература:


  1. Аргинская И.И., Дмитриева Н.Я.Обучаем по системе Л.В. Занкова: 2кл.: Кн. Для учителя. – М.: Просвещение, 1993. – 160с.

  2. Занков Л.В. Беседы с учителями. (Вопросы обучения в начальных классах.) М., Просвещение, 1970. - 200с.

  3. Иванов Д.А., Митрофанов К. Г., Соколова О.В. Компетентностный подход в образовании. Проблемы, понятия, инструментарий. М.: изд-во Академии повышения квалификации и проф. переподготовки работников образования.- 2006г.

  4. Лысенкова. С. Н.. Когда легко учиться: из опыта работы учителя начальных классов школы №587 Москвы.- 2-е изд.М.: Педагогика, 1985 – 176с.(пед. поиск: опыт, проблемы, находки)

  5. Мамыкина М. Ю. Работа над задачей в системе Л. В. Занкова. Начальная школа

№ 4.2003г.

  1. Матвеева Н.А.. Различные арифметические способы решения задач. Начальная школа №3.2001г.

  2. Математика. 1-4 классы: обучение решению текстовых задач/ авт.-сост. И.Л. Кустова. – Волгоград: Учитель, 2009. – 103с.

  3. Новиков А.Учебный процесс в логике исторических типов организационной культуры. Народное образование №1, 2008г.с.163

  4. Петерсон Л.Г., Кубышева М.А., Мазурина С.Е., Зайцева И.В. Что значит «уметь учиться». – М.: АПК и ППРО, УМЦ «Школа 2000…», 2008. – 80с.

  5. Узорова, Нефёдова. 500 задач с пояснением, пошаговым решением и правильным оформлением. 1класс. АСТ.: Астрель. Москва.2004г.

  6. Фадеева. Схемы записи задач. Начальная школа №4.2003г.

  7. Фонин С.Н.. Моделирование, как важное средство обучения решению задач. Начальная школа. №3.1990г.

  8. Шульга Р.П. Решение задач разными способами – средство повышения интереса к математике. Начальная школа №12. 1990г.

  9. Ф.Семья. Совершенствование работы над составными задачами. Начальная школа №5.1991г.







-80%
Курсы повышения квалификации

Особенности работы с гиперактивными детьми в начальной школе

Продолжительность 72 часа
Документ: Удостоверение о повышении квалификации
4000 руб.
800 руб.
Подробнее
Скачать разработку
Сохранить у себя:
Доклад на тему: «СИСТЕМА РАБОТЫ НАД ТЕКСТОВОЙ АРИФМЕТИЧЕСКОЙ ЗАДАЧЕЙ В НАЧАЛЬНОЙ ШКОЛЕ. Виды анализа задачи». (71.84 KB)

Комментарии 0

Чтобы добавить комментарий зарегистрируйтесь или на сайт