Вы уже знакомы с понятием угла между векторами в пространстве. Поэтому на этом уроке мы приступим к рассмотрению скалярного произведения векторов в пространстве.
Как и на плоскости, скалярное произведение двух векторов в пространстве равно произведению длин этих векторов на косинус угла между ними.
Задание: по рисунку определить величину угла между векторами.
Рассмотрим куб АBCDА1B1C1D1, сторона которого равна a, а точка О1 — центр грани А1B1C1D1.
Мы с вами выполнили задание, где нашли скалярное произведение данных пар векторов.
Можно заметить, что, если угол между векторами острый, то скалярное произведение больше нуля. А если угол между векторами тупой, то их скалярное произведение меньше нуля. И только лишь когда векторы перпендикулярны, их скалярное произведение равно нулю. В данном случае, конечно, имеется в виду, что рассматриваемые векторы ненулевые.
А сейчас попробуем разобраться, как находить скалярное произведение векторов по их координатам.
На плоскости скалярное произведение двух векторов равнялось сумме произведений соответствующих координат. В пространстве имеет место такая же формула.
Задание: по координатам векторов , и найти значения выражений: , , , , .
Решение:
Задание: пользуясь координатами векторов , , , выяснить, каким является угол между парами векторов: острым, прямым или тупым.
а) б) в)
Решение:
Итак, мы узнали и использовали 2 формулы скалярного произведения.
Выразив из первой формулы косинус угла между векторами, скалярное произведение можно расписать по второй формуле. А вот длины векторов запишем как корни квадратные из сумм квадратов их соответствующих координат.
Так мы получили формулу вычисления косинуса угла между векторами по их координатам.
Задание: найти угол между векторами и .
а) , , б) , , в) , , г) , , д) , .
Решение:
Стоит отметить, что для скалярного произведения векторов в пространстве справедливы те же свойства, что и для скалярного произведения на плоскости.
Скалярный квадрат вектора всегда больше либо равен нулю.
; , если
А также можно записать переместительный, распределительный и сочетательный законы скалярного произведения. Они позволят в будущем преобразовывать выражения с векторами.
(переместительный закон)
(распределительный закон)
(сочетательный закон)
Итоги:
На этом уроке мы сформулировали определение скалярного произведения двух векторов в пространстве, записали формулу вычисления скалярного произведения векторов по их координатам и получили формулу вычисления косинуса угла между двумя векторами. Помимо этого, для скалярного произведения в пространстве имеют место те же свойства, что и на плоскости.