Меню
Видеоучебник
Видеоучебник  /  Геометрия  /  10 класс  /  Геометрия 10 класс ФГОС  /  Сумма нескольких векторов

Сумма нескольких векторов

Урок 35. Геометрия 10 класс ФГОС

На этом уроке учащиеся впервые увидят отличие векторов в пространстве и на плоскости при построении многоугольника сложения нескольких векторов. В пространстве многоугольник сложения может быть пространственным, то есть не все его вершины лежат в одной плоскости.
Плеер: YouTube Вконтакте

Конспект урока "Сумма нескольких векторов"

Материал урока.

Вам уже известны правила сложения и вычитания двух векторов.

Чтобы сложить два неколлинеарных вектора  и  по правилу треугольника, нужно от некоторой точки А отложить вектор , равный вектору . Далее от точки B отложить вектор , равный вектору . Вектор  является вектором суммы двух векторов  и .

Чтобы сложить два вектора по правилу параллелограмма, нужно отложить от произвольной точки А векторы  и , равные векторам  и  соответственно, и построить на них параллелограмм ABCD. Тогда вектор  равен сумме векторов  и .

Также вам уже знакомы законы сложения векторов: переместительный и сочетательный.

Ну, а убедившись в том, что разность векторов  и  равна сумме вектора  и вектора, противоположного вектору , мы получили два способа построения вектора разности двух векторов.

Сегодня мы будем учиться складывать несколько векторов в пространстве. Но сначала вспомним, как мы это делали на плоскости.

Построим вектор суммы векторов ,  и .

От некоторой точки А отложим вектор , равный вектору . Далее от точки B отложим вектор , равный вектору . А от точки C отложим вектор , равный вектору .

Будем последовательно складывать наши векторы, пользуясь правилом треугольника.

Сумма векторов  и   равна вектору .

Теперь к вектору  добавим вектор . В результате мы получаем вектор .

Тогда можем сказать, что сумма векторов ,  и . равна вектору .

 

Так, последовательно складывая первый вектор со вторым, затем их сумму с третьим и так далее, можно найти суммы четырёх, пяти и большего числа векторов.

Такое правило построения суммы векторов называют правилом многоугольника, и оно позволяет построить вектор суммы неограниченного количества векторов.

Задача. Построить вектор суммы попарно неколлинеарных векторов , , ,  и .

Построение.

 

Примеры, приведённые нами, подходят для векторов, лежащих в одной плоскости. А мы, изучая стереометрию, находимся в пространстве, поэтому правило многоугольника сложения векторов в пространстве может иметь и другую иллюстрацию.

 

Задача. Рассмотрим векторы ,  и , такие, что ,  лежат в одной плоскости, а вектор  не лежит в этой плоскости. Найдём сумму этих векторов.

Решение.

Выберем любую удобную точку О в пространстве и отложим от неё вектор , равный вектору , а от точки А отложим вектор , равный вектору . Понятно, что через проведённые векторы можно провести плоскости. Далее, от точки B отложим вектор , равный вектору . Вектором суммы данных векторов является вектор .

Вы видите, что многоугольник сложения в данном случае является пространственным, то есть не все его вершины лежат в одной плоскости.

Сформулируем правило многоугольника для произвольных точек пространства А1, А2 ,…, Аn.

Это равенство справедливо для любых точек А1, А2, …, An. И, в частности, для случая, когда некоторые из них совпадают.

Например, если начало первого вектора совпадает с концом последнего, то сумма данных векторов равна .

Задача. Упростить выражения

Выполним задание, где, пользуясь данной формулировкой, упростим выражения.

а)

б)

в)

г) =

Так мы с вами рассмотрели примеры преобразования выражений с векторами, представленных в виде алгебраической суммы.

Задача. , , ,  произвольные точки пространства.

Представить вектор  в виде алгебраической суммы векторов:

а) , ,                            б) , ,                             в) , ,

Решение.

В последнем задании рассмотрим параллелепипед ABCDA1B1C1D1.

 Нужно указать вектор , начало и конец которого являются вершинами параллелепипеда. И чтобы истинными были данные равенства.

Сумма векторов .

По рисунку понятно, чтобы восстановить правило многоугольника, не достает вектора . Значит, вектор .

Далее рассмотрим выражение, где сумма векторов .

 

По рисунку понятно, что сумма известных векторов из левой части равенства равна вектору . И чтобы вся сумма равнялась вектору , вектор  должен быть равен вектору .

Перейдём к следующему равенству.

Чтобы восстановить правило многоугольника, вектор  удобнее заменить равным ему вектором . Тогда становится понятно, что вектор «-» равен вектору . А вектор  отсюда равен вектору .

Разберёмся с последним равенством. .

Левую часть представим в виде суммы и заменим вектор «– » на .

Изобразим данные векторы. Видим, что искомый вектор  равен вектору .

Подведём итоги урока.

Сегодня мы сформулировали правило многоугольника сложения нескольких векторов в пространстве. И нашли его отличие от того же правила на плоскости.

Оно заключается в том, что полученный многоугольник может являться пространственным, то есть не все его вершины лежат в одной плоскости.

Также мы сформулировали правило многоугольника для произвольных точек пространства А1, А2 …, Аn.

Сумма векторов + ,+ =  ,.

И если начало первого вектора совпадает с концом последнего, то сумма данных векторов равна .

Эти знания мы смогли применить при выполнении заданий.

0
7622

Комментарии 0

Чтобы добавить комментарий зарегистрируйтесь или на сайт