Меню
Видеоучебник
Видеоучебник  /  Алгебра  /  11 класс  /  Алгебра 11 класc  /  Равносильность уравнений

Равносильность уравнений

Урок 28. Алгебра 11 класc

На этом уроке обобщаются сведения о равносильности уравнений. Повторяются основные теоремы равносильности. Рассматриваются причины потери и появления посторонних корней при решении уравнений.
Плеер: YouTube Вконтакте

Конспект урока "Равносильность уравнений"

Вопросы занятия:

• обобщить сведения о равносильности уравнений;

• повторить основные теоремы равносильности;

• рассмотреть причины потери и появления посторонних корней при решении уравнений.

Материал урока

В процессе изучения математики, начиная с младших классов, мы постоянно сталкиваемся с уравнениями с одной или двумя переменными, с неравенствами, с системами уравнений или неравенств. На сегодняшнем уроке мы постараемся обобщить все, что мы знаем об уравнениях.

Начнем с определения.

Определение.

Два уравнения с одной переменной f(x) = g(x) и p(x) = h(x) называют равносильными, если множества их корней совпадают.

Другими словами, два уравнения называют равносильными, если они имеют одинаковые корни или если оба уравнения не имеют корней.

Например:

Дадим еще одно определение.

Определение.

Если каждый корень уравнения f(x) = g(x) является в то же время корнем уравнения p(x) = h(x), то уравнение p(x) = h(x) называют следствием уравнения f(x) = g(x).

Например:

Очевидно, что справедливо следующее утверждение: два уравнения равносильны тогда и только тогда, когда каждое из них является следствием другого.

Таким образом, общую схему можно описать так. Исходное уравнение преобразовывается в более простое уравнение, полученное уравнение преобразовывается в еще более простое уравнение и так происходит до тех пор, пока не получится довольное простое уравнение, корни которого и находят.

Естественно возникает вопрос, а будут ли корни решенного простого уравнения корнями нашего исходного уравнения? Если все преобразования были равносильными, то есть все полученные уравнения равносильные, тогда да. Если же некоторые преобразования были равносильными, а в некоторых мы не уверены, но точно знаем, что переходили с их помощью к уравнениям-следствиям, то однозначного ответа на вопрос мы не получим.

Для того, чтобы на данный вопрос ответить точно, нужно все найденные корни проверить, подставив их в исходное уравнение. Если найденный корень последнего уравнения не удовлетворяет исходному уравнению, то его называют посторонним корнем и в ответ его включать не надо.

Как правило, решение уравнения осуществляется в три этапа.

1. Технический. На этом этапе осуществляется преобразование по схеме, которую мы описали выше.

2. Анализ решения. На этом этапе, анализируя проведенные преобразования, отвечают на вопрос, все ли они были равносильными.

3. Проверка. Если анализ, проведенный на втором этапе, показывает, что некоторые преобразования могли привести к уравнению-следствию, то обязательно проверка всех найденных корней их подстановкой в исходное уравнение.

Давайте теперь определимся: как же узнать, является ли переход от одного уравнения к другому равносильным преобразованием?

Попробуем вспомнить все теоремы, в которых уравнение заменяется равносильным уравнением. Эти теоремы были доказаны нами ранее, поэтому мы просто напомним их.

Теорема 1. Если какой-либо компонент уравнения перенести из одной части уравнения в другую с противоположным знаком, то получится уравнение, равносильное данному.

Теорема 2. Если обе части уравнения возвести в одну и ту же нечетную степень, то получится уравнение, равносильное данному.

Теорема 3.

Теперь давайте вспомним, что областью определения уравнения эф от икс равно жэ от икс или областью допустимых значений переменной (ОДЗ) называют множество тех значений переменной икс, при которых одновременно имеют смысл выражения f(x) и g(x).

Теорема 4. Если обе части уравнения f(x) = g(x) умножить на одно и тоже выражение h(x, которое: имеет смысл всюду в области определения (в области допустимых значений) уравнения f(x) = g(x); нигде в этой области не обращается в ноль, то получится уравнение f(x)h(x) = g(x)h(x), равносильное данному.

Следствием этой теоремы будет известный факт о том, что если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильно данному.

Теорема 5.

Теорема 6.

Теперь давайте вспомним, какие преобразования переводят уравнение в уравнение-следствие.

Если в процессе решения, мы воспользуемся последними теоремами, но не будем проверять выполнение необходимых условий, то получится уравнение-следствие.

Например:

Второй корень является посторонним для уравнения:

А появился он потому, что мы умножили обе части уравнения на одно и то же выражение, нарушив при этом условие теоремы 4.

В этой теореме содержится требование: выражение, на которое мы умножаем обе части уравнения, нигде не должно обращаться в ноль. А в нашем случае, выражение x – 2 обращается в ноль при x = 2, которое и оказалось посторонним корнем.

Теперь давайте обе части исходного уравнения возведем в квадрат. Получим:

Посторонний корень появился потому, что мы возвели обе части уравнения в одну и ту же четную степень, нарушив при этом условие теоремы пять. В этой теореме содержится требование: обе части уравнения должны быть неотрицательны. Про выражение x – 5 мы не можем этого утверждать.

Рассмотрим уравнение

Потенцируя, получим уравнение

Но этот корень является посторонним для исходного уравнения, поскольку оба выражения под знаками логарифмов принимают отрицательные значения.

А появился этот корень потому, что при потенцировании, мы нарушили условие шестой теоремы. В этой теореме содержится требование: выражения под знаками логарифмов должны быть положительными, о выражениях 2x – 4 и 3x – 5 этого утверждать мы не можем, так как они при одних значениях x положительны, при других – они отрицательны.

В нашем примере переход от логарифмического уравнения к уравнению 2x – 4 = 3x – 5 привел к расширению области определения уравнения.

Область определения логарифмического уравнения задается системой неравенств

решением которого будет промежуток

Областью определения уравнения 2x – 4 = 3x – 5 является множество всех действительных чисел. То есть у области определения логарифмического уравнения добавился луч от минус бесконечности до двух. В этом промежутке и находится корень уравнения x = 1.

Давайте попробуем сформулировать возможные причины расширения области определения уравнения:

1. Освобождение в процессе решения уравнения от знаменателей, содержащих переменную величину.

2. Освобождение в процессе решения уравнения от знаков корней четной степени.

3. Освобождение в процессе решения уравнения от знаков логарифмов.

Итак при решении уравнения обязательна проверка всех найденных корней, если:

1. Произошло расширение области определения уравнения.

2. Осуществлялось возведение обеих частей уравнения в одну и ту же четную степень.

3. Выполнялось умножение обеих частей уравнения на одно и то же выражение с переменной (имеющее смысл во всей области определения уравнения).

Рассмотрим пример.

В рассмотренном примере, при проверке корней у нас были небольшие и несложные вычисления, а как же быть в случаях, когда проверка корней сопровождается значительными вычислительными трудностями? Существует несколько так называемых обходных путей проверки.

Например, при проверке корней в примере, мы не высчитывали значение левой части уравнения, а просто прикидывали чему равно получившееся выражение. Такая прикидка – один из обходных путей проверки.

Но этот корень можно было проверить и другим способом. Мы могли его проверить не по исходному уравнению, а по полученному в процессе преобразований уравнению-следствию.

Как правило, самый легкий путь проверки – по области определения исходного уравнения.

Каждый раз, при решении уравнений, явно выделять три этапа мы не будем. Но мысленно мы всегда такое разбиение будем делать.

Рассмотрим еще один пример.

Мы рассмотрели варианты, когда уравнение в процессе преобразований приобретает новые корни, но бывают случаи, когда уравнение теряет корни. Укажем причины потери корней при решении уравнений:

Рассмотрим пример.

Можно сделать вывод, что применяя при решении уравнения какую-либо формулу, надо следить за тем, чтобы ОДЗ переменной для правой и левой частей формулы были одинаковыми.

0
6374

Комментарии 0

Чтобы добавить комментарий зарегистрируйтесь или на сайт