Меню
Видеоучебник
Видеоучебник  /  Математика  /  6 класс  /  Математика 6 класс  /  Прямая и обратная пропорциональные зависимости

Прямая и обратная пропорциональные зависимости

Урок 22. Математика 6 класс

В этом уроке мы закрепим представления о пропорциях. Введем понятия прямо пропорциональных и обратно пропорциональных величин. Научимся составлять пропорции при решении задач на прямую и обратную пропорциональные зависимости.
Плеер: YouTube Вконтакте

Конспект урока "Прямая и обратная пропорциональные зависимости"

Сегодня на уроке мы продолжим работать с пропорциями, а точнее познакомимся с прямой и обратной пропорциональными зависимостями.

Задача

Сколько нужно сахара, чтобы сварить варенье из 5 кг черешни, если по рецепту на 2 кг ягод нужно 3 кг сахара?

Решение:

Из решения видно, что во сколько раз больше имеется черешни, во столько раз больше понадобится сахара

Эту же задачу можно решить и при помощи пропорции. Запишем кратко условие задачи в виде таблицы, обозначив за неизвестную нам массу сахара буквой х. Смотрите, у нас есть столбик, где мы будем записывать массу ягод, и столбик, где мы укажем соответствующую массу сахара на массу ягод. Итак, по условию задачи известно, что по рецепту на 2 кг ягод нужно 3 кг сахара. Нам нужно узнать, сколько кг сахара потребуется на 5 кг ягод.

Такая зависимость между массой ягод и массой сахара условно обозначается в таблице одинаково направленными стрелками. Их направление говорит о том, что если первая величина возрастает (стрелка вверх), то и вторая тоже возрастает (стрелка тоже вверх).

Задача

Велосипедист, двигаясь с постоянной скоростью, проехал 10 км за 20 минут. Какой путь проедет велосипедист за 50 минут?

Решение: для наглядности запишем кратко условие задачи в виде таблицы.

Понятно, что путь увеличится во столько раз, во сколько раз увеличится время. Ставим стрелки в одном направлении.

Такие величины, как масса ягод для варенья и масса сахара, время и пройденный за это время при постоянной скорости путь, и т.д. называют прямо пропорциональными величинами.

Определение

Две величины называются прямо пропорциональными, если при увеличении (уменьшении) одной из них в несколько раз другая увеличивается (уменьшается) во столько же раз.

Задача

Автомобиль ехал 3 часа со скоростью 60 км/ч. За какое время он продет это же расстояние, если будет ехать со скоростью 90 км/ч?

Решение:

Из решения видно, что во сколько раз скорость автомобиля больше, во столько раз меньше времени тратится на этот же путь

Эту же задачу решим при помощи пропорции. Запишем в таблицу кратко условие задачи. За х обозначим неизвестное нам время.

Понятно, что чем больше скорость автомобиля, тем меньше времени ему понадобится на преодоление этого же пути. Такая зависимость между скоростью и временем, затраченным на пройденный путь, условно обозначается в таблице противоположно направленными стрелками. Их направление говорит о том, что если первая величина возрастает (стрелка вверх), то вторая убывает (стрелка вниз). Составим пропорцию. Т.к. стрелки направлены в разные стороны, то второе отношение перевернём.

Задача

5 рабочих выполнили заказ за 132 часа. За какое время этот же заказ смогут выполнить 12 рабочих?

Решение:

Понятно, что чем больше будет задействовано рабочих, тем быстрее выполнится заказ. Значит, ставим стрелки в противоположном направлении. Составим пропорцию:

Такие величины, как скорость автомобиля и время, за которое он проедет определённый путь, число работников и время, за которое они выполняют заказ, и т.д. называют обратно пропорциональными величинами.

Определение

Две величины называются обратно пропорциональными, если при увеличении (уменьшении) одной из них в несколько раз другая уменьшается (увеличивается) во столько же раз.

Не всякие две величины являются прямо пропорциональными или обратно пропорциональными.

Например, возраст человека и размер его обуви не связаны пропорциональной зависимостью. Зависимость между величинами есть. Размер обуви с возрастом увеличивается, но не во столько же раз.

Возраст дерева и его высота не связаны пропорциональной зависимостью. В этом случае зависимость между величинами есть. Действительно, высота дерева с возрастом увеличивается, но не во столько же раз.

       

0
32814

Комментарии 0

Чтобы добавить комментарий зарегистрируйтесь или на сайт