Установить некоторую закономерность и дописать ещё одно число в каждый ряд.
В первом случае в порядке убывания записаны нечётные числа:

Во втором случае каждое следующее число отличается от предыдущего на 5:

В третьем случае:

Только что мы с вами привели примеры последовательностей, ещё их можно называть числовыми последовательностями.
Последовательности
будем называть буквами, например
,
где n
-
количество членов последовательности.
Числа, образующие последовательность, называют членами последовательности.
Члены последовательности называют такой же буквой с указанием его порядкового номера n, где n является натуральным числом.
Например,
-
множество положительных чётных чисел записанных в порядке возрастания. Члены
последовательности -
.
Такие последовательности называют бесконечными. Так как в названии последовательности не указано точное количество членов.
Так же последовательность может быть конечной.
Например,
последовательность (
):
2, 4, 6, 8, 10, имеет 5 членов последовательности, и её последний член равен
10.
Пример.
Для
каждого члена последовательности
,
записать предшествующий ему и следующий за ним.

Формула n – ого члена:

Например:

Пример.
Найти первых пять членов последовательности, заданной формулой:

Найти пять первых членов последовательности, заданной формулой:

Нашли первых пять членов последовательности с помощью формулы. В данном случае, для нахождения каждого члена нам достаточно было знать только его номер.
Пример.
1. Найти пять первых членов последовательности. Она задана первым членом
и формулой, выражающей каждый член последовательности через предыдущий:

Для нахождения последующих членов последовательности нужно:

Получили первых пять членов последовательности по первому члену и рекуррентной формуле.
2. Найти пять первых членов последовательности. Она задана первым членом
и формулой, выражающей каждый член последовательности через предыдущий:

Для нахождения последующих членов последовательности нам нужно:

Получили первых пять членов последовательности по первому члену и рекуррентной формуле.






