Прежде всего, давайте вспомним, формулу расстояния между двумя точками и еще, повторим, что уравнение с двумя переменными x и y называется уравнением линии l, если этому уравнению удовлетворяют координаты любой точки линии l и не удовлетворяют координаты никакой точки, не лежащей на этой линии.
Сегодня на уроке мы попробуем по геометрическим свойствам линии найти ее уравнение.
В качестве линии рассмотрим окружность радиуса с центром в точке .
Пусть центр окружности имеет координаты . Возьмем на окружности произвольную точку . Запишем формулу расстояния между точками C и M. Мы знаем, что длина отрезка, который соединяет любую точку на окружности с центром окружности – это радиус. Поэтому можно записать, что MC равно r. Возведем MC в квадрат и получим уравнение MC2 = r2. Заменим MC2 квадрат на выражение и получим, что если точка лежит на окружности с радиусом r и центром в точке C, то координаты этой точки удовлетворяют уравнению . Если точка не лежит на окружности, то расстояние от этой точки до центра окружности не равно радиусу, поэтому координаты таких точек не будут удовлетворять полученному уравнению. Поэтому можно сказать, что в прямоугольной системе координат уравнение окружности радиуса r с центром в точке C с координатами имеет вид: .
Задача. Записать уравнение окружности с радиусом и центром в начале координат.
Решение.
Начало координат имеет координаты (0;0). Подставим их в уравнение окружности и получим, что уравнение окружности с радиусом r и центром в начале координат имеет вид
.
Задача. Начертить окружность, заданную уравнением .
Решение.
Запишем общее уравнение окружности и проанализируем исходное уравнение. Прежде всего, определимся с координатами центра окружности. Это будут числа 5 и 3. Теперь давайте определим величину радиуса окружности.
Поскольку в правой части формулы стоит квадрат радиуса, то для того, чтобы найти радиус надо извлечь квадратный корень из 4. Получим 2.
Значит наша формула задает окружность с центром в точке с координатами пять три и радиусом равным двум.
Задача. Начертить окружность, заданную уравнением .
Решение.
Запишем общее уравнение окружности и проанализируем исходное уравнение. Прежде всего определимся с координатами центра окружности.
Это будут числа -4 и 2. Теперь давайте определим величину радиуса окружности.
Задача. Начертить окружность, заданную уравнением .
Решение. Уравнениями такого типа описываются окружности с центром в начале координат. Теперь давайте определим величину радиуса окружности. Поскольку в правой части формулы стоит квадрат радиуса, то для того, чтобы найти радиус надо извлечь квадратный корень из 9.
Значит наша формула задает окружность с центром в точке с координатами (0;0) и радиусом равным 3.
Теперь давайте попробуем решить задачу обратную данным.
Задача. Составить уравнение окружности, которая показана на рисунке.
Как и в предыдущих задачах мы начнем с определения координат центра окружности. Сделать это нетрудно. Центр этой окружности совпадает с началом координат, поэтому центр окружности имеет координаты (0;0).
Нетрудно заметить, что радиус окружности равен 4.
Запишем уравнение окружности и подставим найденные значения.
Ответ: .
Решим еще одну задачу.
Задача. Составить уравнение окружности, которая показана на рисунке.
Решение.
– центр окружности
– радиус окружности
Ответ:.
Задача. Составить уравнение окружности, которая показана на рисунке.
Решение.
– центр окружности
– радиус окружности
Ответ:.
Решая задачи, мы с вами выполняли один и тоже порядок действий. Давайте еще раз повторим этот порядок.
Для того, что бы составить уравнение окружности и построить ее надо:
1. Найти координаты центра окружности.
2. Найти длину радиуса этой окружности.
3. Записать уравнение окружности.
4. Подставить полученные значения в уравнение окружности.
5. Построить окружность, если это требуется для решения задачи.
Рассмотрим еще одну задачу.
Написать уравнение окружности с диаметром эм эн, если точка эн имеет координаты два три, точка эм имеет координаты шесть три.
Задача. Написать уравнение окружности с диаметром , если , .
Решение.
Найдем координаты центра окружности. Центр окружности является серединой диаметра. Воспользуемся формулами для нахождения координат середины отрезка.
Получим, что центр окружности имеет координаты .
Теперь определим радиус окружности. Для этого найдем расстояние от центра окружности до концов диаметра.
Запишем общее уравнение окружности и подставим в него найденные значения. Тогда получим, что уравнение данной окружности имеет вид:
Ответ: .
Подведем итоги урока.
На сегодняшнем уроке мы познакомились с формулой, которая задает окружность с центром в точке С (x0; y0) и радиусом r.
Также мы познакомились с формулой, которая задает окружность с центром в начале координат и радиусом r.
Мы рассмотрели задачи на составление уравнения окружности по рисунку и на построение окружности по заданному уравнению.