Меню
Видеоучебник
Видеоучебник  /  Физика  /  11 класс  /  Физика 11 класс ФГОС  /  Идеальный колебательный контур. Формула Томсона

Идеальный колебательный контур. Формула Томсона

Урок 11. Физика 11 класс ФГОС

В этом уроке мы вспомним, какие колебания называются электромагнитными. Узнаем, какие электромагнитные колебания являются гармоническими. Выясним, от чего зависит период свободных колебаний в идеальном колебательном контуре. А также узнаем, как связаны между собой амплитуды колебаний заряда и тока при разрядке конденсатора через катушку.

Доступ к видеоуроку ограничен


Конспект урока "Идеальный колебательный контур. Формула Томсона"

На прошлом уроке мы с вами познакомились с электромагнитными колебаниями. Напомним, что так называют периодические изменения со временем электрических и магнитных величин в электрической цепи.

Рассмотрев качественную сторону теории процессов в колебательном контуре, перейдём к её количественной стороне. Для этого рассмотрим идеальный колебательный контур, то есть контур, активное сопротивление которого пренебрежимо мало.

В таком контуре, как мы показали ранее, полная электромагнитная энергия в любой момент времени равна сумме энергий электрического и магнитного полей, и она не меняется с течением времени:

А раз энергия контура неизменная, то производная полной энергии по времени равна нулю:

Напомним, что в записанной формуле заряд и сила тока в цепи являются функцией времени.

Чтобы понять физический смысл этого уравнения, перепишем его так:

Из такой записи видно, что скорость изменения магнитного поля по модулю равна скорости изменения энергии электрического поля. А знак минус в формуле показывает на то, что увеличение энергии магнитного поля происходит за счёт убыли энергии поля электрического.

Вычислим производные в записанном уравнении, воспользовавшись для этого формулой вычисления производной сложной функции.

А теперь вспомним, что производная заряда по времени есть сила мгновенного тока (то есть сила тока в данный момент времени):

Поэтому предыдущее уравнение можно переписать так, как показано на экране:

Производная силы тока по времени есть не что иное, как вторая производная заряда по времени, подобно тому, как производная скорости по времени (то есть ускорение) есть вторая производная координаты по времени:

Перепишем предыдущее равенство с учётом этой поправки:

Разделив левую и правую части этого уравнения на «Эль И» (Li), получим основное уравнение, описывающее свободные гармонические электрические колебания в контуре:

Данное уравнение аналогично уравнению, описывающему гармонические механические колебания:

Отсюда видно, что величина, обратная квадратному корню из произведения индуктивности и ёмкости, является циклической частотой свободных электрических колебаний:

Зная циклическую частоту колебаний, нетрудно найти и их период, то есть минимальный промежуток времени, через который процесс в колебательном контуре полностью повторяется:

Эта формула впервые была получена английским физиком Уильямом Томсоном 1853 году, и в настоящее время носит его имя.

Из формулы видно, что период колебательного контура определяется параметрами составляющих его элементов: индуктивностью катушки и ёмкостью конденсатора. Из формулы Томсона также следует, что, например, при уменьшении ёмкости или индуктивности период колебаний должен уменьшиться, а их частота — увеличиться и наоборот.

Но вернёмся к уравнению свободных электромагнитных колебаний в идеальном колебательном контуре. Его решением является уравнение, выражающее зависимость заряда конденсатора от времени:

В записанной формуле qm — это начальное (или амплитудное) значение заряда, сообщённому конденсатору. Из этой формулы следует, что заряд на конденсаторе изменяется со временем по гармоническому закону.

Если взять первую производную заряда конденсатора по времени, то мы получим уравнение, описывающее изменение силы тока в контуре:

Величина, равная произведению максимального заряда конденсатора и циклической частоты колебаний, является амплитудным значением силы тока:

Перепишем уравнение для силы тока с учётом последнего равенства, а также воспользовавшись формулой приведения:

Из такой записи хорошо видно, что сила тока в колебательном контуре также совершает гармонические колебания с той же частотой, но по фазе она смещена на π/2 относительно колебаний заряда.

Для закрепления материала, решим с вами такую задачу. Конденсатор ёмкостью 2 мкФ зарядили до напряжения 100 В, а затем замкнули на катушку с индуктивностью 5 мГн. Определите заряд конденсатора через 0,025π мс после замыкания.

В заключение отметим, что в реальных колебательных контурах всегда имеется активное сопротивление, поэтому часть энергии контура всегда превращается во внутреннюю проводников, которая выделяется в виде излучения. Кроме того, часть энергии теряется на перемагничивание сердечника и изменение поляризации диэлектрика. Поэтому полная энергия контура с течением времени уменьшается, в результате уменьшается и амплитуда колебаний. Следовательно, реальные электромагнитные колебания в контуре являются затухающими.

2159

Комментарии 0

Чтобы добавить комментарий зарегистрируйтесь или на сайт