Сегодня на уроке мы повторим определение производной функции. Вспомним известные формулы производных. Познакомимся с правилами дифференцирования суммы, произведения и частного. Познакомимся с формулой нахождения производной сложной функции.
Прежде чем приступить к рассмотрению новой темы, давайте напомним определение производной.
Пусть функция определена на некотором промежутке, – точка этого промежутка и число такое, что также принадлежит данному промежутку. Тогда предел разностного отношения при (если этот предел существует), называется производной функции в точке и обозначается . Таким образом, .
Вспомним, что , , , .
Теперь приступим к рассмотрению правил дифференцирования.
Итак, производная суммы равна сумме производных, то есть .
Это свойство производной можно сформулировать так: если каждая из функций и имеет производную, то их сумма также имеет производную и справедлива данная формула.
Давайте докажем эту формулу, используя определение производной.
Производная разности равна разности производных, то есть .
Отметим, что производная суммы нескольких функций равна сумме производных этих функций.
Давайте найдём производную функции .
.
Следующее правило дифференцирования. Постоянный множитель можно вынести за знак производной: .
Найдём производную функции .
Познакомимся с ещё двумя правилами дифференцирования.
Производная произведения двух функций равна сумме произведения производной первого множителя на второй множитель и произведения первого множителя на производную второго множителя.
Отметим, что эта формула справедлива при условии, что функции и имеют производную в точке .
Найдём производную функции .
И познакомимся с ещё одной формулой, которую используют для нахождения производной частного. Производная частного двух функций равна дроби, у которой знаменатель есть квадрат знаменателя данной дроби, а числитель представляет собой разность произведения производной числителя на знаменатель и произведения числителя на производную знаменателя.
Эта формула справедлива при условии, что функции и имеют производную в точке , причём функция .
Найдём производную функции .
Сейчас давайте поговорим о производной сложной функции.
Посмотрите на функцию . Данную функцию можно рассматривать как сложную функцию , где .
Получается, что – это функция, аргументом которой является функция .
Таким образом, сложная функция – это функция от функции .
, где .
Найдём производную функции .
А сейчас давайте выполним задание. Найдите производные следующих функций.
а) ; б) ; в) .
Решение.