Живые числа
Вальтер Боро
- Первый проходит по совсем легкой, ровной тропинке между суммами делителей и критериями простоты числа. Лишь в конце станет видно, что она вливается в важное направление современной математики. Вальтер Боро рассказывает нам замечательную историю о дружественных числах , которая ведёт из дворца багдадского халифа в современные вычислительные центры. Мы познакомимся с одним из старых математических видов спорта – охотой за дружественными числами, в котором непревзойдённым чемпионом мира долгое время был Леонард Эйлер.
Дон Цагир
- Дон Цагир предъявляет нам список мировых рекордов – наибольших известных простых чисел, и мы с одного взгляда убеждаемся, что простые числа следует признать самыми капризными и строптивыми из всех объектов, какие только изучают математики. И тут же он убеждает нас в прямо противоположном – что простые числа безусловно и чуть ли не с педантической точностью подчиняются определённым законам. Особенно изумляет явная формула Римана для числа p(x) простых чисел, не превосходящих x. А затем снова выявляется строптивость простых чисел при сравнении асимптотических формул Лежандра, Гаусса и Римана для p(x) с фактическим распределением первых 50 миллионов простых чисел, приводящем к дико скачущей кривой, похожей на температурную.
Юрген Рольфс
- Юрген Рольфс рассказывает нам о суммах двух квадратов. Его маршрут начинается с пифагоровых троек чисел, для которых вмиг выводится общая формула. Вслед за этим определяется число пифагоровых треугольников, у которых длина гипотенузы не превышает заданной величины. При этом оказывается, что тема пифагоровых троек не только не завершается с открытием общей формулы, а наоборот, лишь после этого становится по-настоящему интересной. Кончается путешествие задачей из физики о распространении тепла по спасательному кругу (тору) из тонкой жести. Это распространение описывается дифференциальным уравнением в частных производных, при решении которого ключевую роль играет число v(m) представлений числа m в виде суммы двух квадратов. Таким образом, здесь теория чисел и математический анализ тесно связаны между собой.
Ханспетер Крафт
- Ханспетер Крафт вводит нас в область, где неразрывно переплелись теория чисел и геометрия,– алгебраические кривые и диофантовы уравнения . И эта экскурсия начинается с формулы для пифагоровых троек, которая выводится с помощью геометрического метода Диофанта. Точно так же можно решить более общую задачу о нахождении всех точек с рациональными координатами, лежащих на кривой второго порядка. Аналогичная задача для кривой третьего порядка оказывается несравненно более трудной и интересной. Нам демонстрируют геометрический метод, которым можно построить все искомые рациональные точки, исходя из некоторого конечного множества таких точек (теорема Морделла). В дальнейшем ходе экскурсии мы узнаем и ещё многое другое об эллиптических кривых; правда, рассказ о точках кручения и последних результатах Б. Мазура рассчитан уже на читателя, несколько семестров изучавшего математику.
Енс Карстен Янцен
- Енс Карстен Янцен знакомит нас с деятельностью специалистов по комбинаторике – людей, которые делают с конечными множествами всё мыслимое и немыслимое, а потом спрашивают себя, сколькими способами это можно сделать. Он рассказывает нам о перестановках и разбиениях, диаграммах Юнга и канонических таблицах, а также об удивительной связи между этими комбинаторными понятиями. Затем мы узнаём, чем занимаются специалисты по теории представлений и сколь многим обязаны специалистам по комбинаторике те, кто изучает представления симметрических или общих линейных групп. И наконец, новый поворот темы о связи теории представлений с комбинаторикой : теория представлений возвращает долг комбинаторике, унифицируя и обобщая знаменитые тождества Эйлера, Гаусса и Якоби для степенных рядов.
- Тождество Якоби для степенных рядов встречается не только у Янцена, а дзета-функция Римана не только у Цагира – и то и другое упоминается, пусть и мимоходом, у Боро и Рольфса. Суммы делителей появляются не только в первой, но и в третьей экскурсии. Кому хоть раз довелось погрузиться поглубже в мир математики, известны такие неожиданные взаимосвязи. Зачастую выявляются связи между её разделами, не имеющими на первый взгляд абсолютно ничего общего. И это – не какая-нибудь там экзотика или случайное периферийное явление, а типичная черта всякой настоящей математики. Маленькие неожиданности, с которыми мы здесь столкнёмся, совершенно «невинны» по сравнению с фантастическими сюрпризами такого рода, то и дело встречающимися в математических исследованиях. Обнаружение таких неожиданных, очень часто глубинных связей принадлежит к самым волнующим событиям в жизни математика.

Презентация на тему "живые числа" (63.4 KB)

