Памятка «Учимся решать задач на движение»
В задачах на движение рассматриваются три взаимосвязанные величины:
S - расстояние (пройденный путь),
t - время движения и
V - скорость – расстояние, пройденное за единицу времени.
Расстояние – это произведение скорости на время движения
S = V ● t
Скорость - это частное от деления расстояния на время движения
V = S : t
Время – это частное от деления расстояния на скорость движения
t = S : V
Задачи на встречное движение
Скорость сближения – это сумма скоростей, движущихся навстречу друг другу тел. V сближ. = 1V + 2V
Пример 1. Два велосипедиста одновременно выехали навстречу друг другу из двух посёлков и встретились через 3 часа. Первый велосипедист ехал со скоростью 12 км/ч, а второй – 14 км/ч. На каком расстоянии находятся посёлки?
Схема к задаче:
Решение:
S = V ● t
V сближ. = 1V + 2V
1 способ:
1) 12 • 3 = 36 (км) – проехал первый велосипедист до встречи
2) 14 • 3 = 42 (км) – проехал второй велосипедист до встречи
3) 36 + 42 = 78 (км)
2 способ:
1) 12 + 14 = 26 (км/ч) – скорость сближения
2) 26 • 3 = 78 (км)
Ответ: расстояние между посёлками 78 км.
Пример 2. Из двух городов навстречу друг другу выехали две машины. Скорость первой – 80 км/ч, скорость второй – 60 км/ч. Через, сколько часов машины встретятся, если расстояние между городами 280 км?
Схема к задаче:
Решение:
V сближ. = 1V + 2V
t = S : V
1) 80 + 60 = 140 (км/ч) – скорость сближения
2) 280 : 140 = 2 (ч)
Ответ: машины встретятся через 2 часа.
Пример 3. Из двух городов, расстояние между которыми 340 км, выехали одновременно навстречу друг другу две машины. Скорость первой – 80 км/ч. С какой скоростью ехала вторая машина, если встретились они через 2 часа?
Схема к задаче:
Решение:
V = S : t
2V = V сближ. - 1V
1) 340 : 2 = 170 (км/ч) – скорость сближения
2) 170 – 80 = 90 (км/ч)
Ответ: 90 км/ч. скорость второй машины
Задачи на движение в противоположных направлениях
Скорость удаления – это расстояние, которое проходят тела за 1 ч при движении в противоположных направлениях.
V удал. = 1V + 2V
Пример 1. Два лыжника одновременно вышли из пункта А в противоположных направлениях. Первый лыжник шёл со скоростью 12 км/ч, а второй – 14 км/ч. На каком расстоянии друг от друга они будут через 3 ч?
Схема к задаче:
Решение:
S = V ● t
1 способ
1)12 • 3 = 36 (км) – расстояние, которое прошёл первый лыжник за 3 ч
2)14 • 3 = 42 (км) – расстояние, которое прошёл второй лыжник за 3 ч
3)36 + 42 = 78 (км)
2 способ
V удал. = 1V + 2V
S = V ● t
1)12 + 14 = 26 (км/ч) – скорость удаления
2)26 • 3 = 78 (км)
Ответ: через 3 ч они будут друг от друга на расстоянии 78 км.
Пример 2. Из города в противоположных направлениях выехали две машины. Скорость первой – 80 км/ч, скорость второй – 60 км/ч. Через сколько часов расстояние между машинами будет 280 км?
Схема к задаче:
Решение:
V удал. = 1V + 2V
t = S : V
1) 80 + 60 = 140 (км/ч) – скорость удаления
2) 280 : 140 = 2 (ч)
Ответ: через 2 часа расстояние между машинами будет 280 км
Пример 3. Из города одновременно в противоположных направлениях выехали две машины. Скорость первой – 80 км/ч. С какой скоростью ехала вторая машина, если через 2 часа расстояние между ними было 340 км?
Схема к задаче:
Решение:
V = S : t
2V = V удал. - 1V
1) 340 : 2 = 170 (км/ч) – скорость удаления машин
2) 170 – 80 = 90 (км/ч)
Ответ: скорость второй машины 90 км/ч.