Меню
Разработки
Разработки  /  Математика  /  Разное  /  Материал по математике "Задача о Кенигсбергских мостах"

Материал по математике "Задача о Кенигсбергских мостах"

В статье рассмотрены решения Эйлера задачи о кенигсбергских мостах, а также нестандартное решение Кайзера.
20.06.2015

Описание разработки

Легко, конечно попытаться решить эту задачу эмпирически, производя перебор всех маршрутов, но все попытки окончатся неудачей. Исключительный вклад Эйлера в решение этой задачи заключается в том, что он доказал невозможность такого маршрута. Для доказательства того, что задача не имеет решения, Эйлер обозначил каждую часть суши точкой (вершиной), а каждый мост – линией (ребром), соединяющей соответствующие точки. Получился “граф”. Этот граф показан на рисунке 2, где точки отмечены теми же буквами, что и четыре части суши на рисунке 1.

Утверждение о не существовании “положительного” решения у этой задачи эквивалентно утверждению о невозможности обойти специальным образом граф, представленный на рисунке 2.

Отправляясь от этого частного случая Эйлер обобщил постановку задачи и нашёл критерий существования обхода у данного графа, а именно граф должен быть связным и каждая его вершина должна быть инцидентна чётному числу рёбер.

Решение Эйлером задачи о Кёнигсбергских мостах привела к первой опубликованной работе по теории графов. Задачу об обходе мостов можно обобщить и получить следующую задачу теории графов: можно ли найти в данном графе G цикл, содержащий все вершины и все рёбра? Граф, в котором это, возможно, называется эйлеровым. Таким образом, эйлеров граф имеет эйлеров цикл – замкнутую цепь, содержащую все вершины и все рёбра. Ясно, что эйлеров граф должен быть связным. Если снять ограничения на замкнутость цепи, то граф называется полуэйлеровым.

Теорема 1 (критерий): Граф с более чем одной вершиной имеет эйлеров цикл тогда и только тогда, когда он связный и каждая его вершина имеет чётную степень.

Доказательство: Предположим, что граф G имеет эйлеров цикл. Граф является связным, так как каждая вершина принадлежит циклу. Для всякой вершины v графа G каждый раз, когда эйлеров цикл проходит через v, он вносит 2 в степень v. Поэтому степень v чётная. Обратно, нужно показать, что каждый связный граф, у которого степени вершин чётные, имеет эйлеров цикл. Докажем эту теорему, используя индукцию по числу вершин. Поскольку теорема тривиально справедлива при n£3, начнём индукцию с n=3.

Предположим, что каждый связный граф, имеющий менее k вершин, и все вершины которого обладают чётной степенью, содержит эйлеров цикл. Пусть G – связный граф, содержащий k вершин, степени которых чётные.

Допустим, что v1 и v2 - вершины графа G. Поскольку граф G – связный, существует путь из v1 в v2. Поскольку степень v2 – чётная, существует неиспользованное ребро, по которому можно продолжить путь. Поскольку граф конечный, то путь, в конце концов, должен вернуться в v1, и эйлеров цикл С1 можно считать построенным. Если С1 является эйлеровым циклом для G, тогда доказательство закончено.

Если нет, то пусть G/ - подграф графа G, полученный удалением всех рёбер, принадлежащих С1. Поскольку С1 содержит чётное число рёбер, инцидентных каждой вершине, каждая вершина подграфа G/ имеет чётную степень. Пусть e – ребро графа G/, пусть Ge – компонента графа G/, содержащая е.

Материал по математике Задача о Кенигсбергских мостах

Поскольку G/ имеет менее, чем k, вершин, и у каждой вершины графа G/ чётная степень, граф G/ имеет эйлеров цикл. Пусть С2. Далее у С1 и С2 имеется общая вершина, допустим, а. Теперь можно продолжить эйлеров цикл, начиная его в а, пройти С1, вернуться в а, затем пройти С2 и вернуться в а. Если новый эйлеров цикл не является эйлеровым циклом для G, продолжаем использовать этот процесс, расширяя наш эйлеров цикл, пока, к конце концов, не получим эйлеров цикл для G.

Из теоремы 1 следует, что если в связном графе G нет вершин с нечётными степенями, то в G есть замкнутая цепь, содержащая все вершины и все рёбра графа G. Аналогичный результат справедлив для связных графов, имеющих некоторое число вершин с нечётными степенями.

Следствие 1(а): Пусть G- связный граф, в котором 2n вершин имеют нечётные степени, n>1. Тогда множество рёбер графа G можно разбить на n открытых цепей.

Следствие 1(б): Пусть G- связный граф, в котором две вершины имеют нечётные степени. Тогда в G есть открытая цепь, содержащая все вершины и все рёбра графа G (и начинающаяся в одной из вершин с нечётной степенью, а кончающаяся в другой). Эйлеровым путём в графе называется путь, содержащий все рёбра графа. Эйлеров путь называется собственным, если он не является эйлеровым циклом.

Теорема 2: Если граф G обладает эйлеровым путём с концами А и В (А не совпадает с В), то граф G связный и А и В – единственные нечётные его вершины.

Доказательство: Связность графа следует из определения эйлерова пути. Если путь начинается в А, а заканчивается в другой вершине, то и А и В – нечётные даже если путь неоднократно проходил через А и В. В любую другую вершину графа путь должен был привести и вывести из неё, то есть все остальные вершины должны быть чётными.

Теорема 3: (обратная) Если граф G связный и А и В единственные нечётные вершины его, то граф G обладает эйлеровым путём с концами А и В.

Доказательство: Вершины А и В могут быть соединены ребром в графе, а могут быть соединены. Если А и В соединены ребром, то удалим его; тогда все вершины станут чётными. Новый граф (по теореме 1) обладает эйлеровым циклом, началом и концом которого может служить любая вершина. Начнём эйлеров путь в вершине А и кончим его в вершине А. Добавим ребро (А,В) и получим эйлеров путь с началом в А и концом в В.

Если А и В не соединены ребром, то к графу добавим новое ребро (А,В), тогда все вершины его станут чётными. Новый граф (по теореме 1) обладает эйлеровым циклом. Начнём его из вершины А по ребру (А,В). Заканчивается путь тоже в вершине А. Если удалить теперь из полученного цикла ребро (А,В), то останется эйлеров путь с началом в В и концом в А или началом в А и концом В.

«Решение Кайзера».

На карте старого Кёнигсберга был ещё один мост, появившийся чуть позже и соединявший остров Ломзе с южной стороной. Своим появлением этот мост обязан самой задаче Эйлера-Канта. Произошло это при следующих обстоятельствах.

Весь материал - в документе.

Содержимое разработки

Родоначальником теории графов считается Леонард Эйлер. В 1736 году в одном из своих писем он формулирует и предлагает решение задачи о семи кёнигсбергских мостах, ставшей впоследствии одной из классических задач теории графов.

Издавна среди жителей Кёнигсберга (теперь Калининграда) была распространена такая загадка: как пройти по всем мостам, не проходя ни по одному из них дважды? Многие кёнигсбержцы пытались решить эту задачу как теоретически, так и практически, во время прогулок. Но никому это не удавалось, однако не удавалось и доказать, что это даже теоретически невозможно.

В 1736 году задача о семи мостах заинтересовала выдающегося математика, члена Петербургской академии наук Леонарда Эйлера, о чём он написал в письме итальянскому математику и инженеру Мариони от 13 марта 1736 года. В этом письме Эйлер пишет о том, что он смог найти правило, пользуясь которым легко определить, можно ли пройти по всем мостам, не проходя дважды ни по одному из них (в случае семи мостов Кёнигсберга это невозможно).

Для того, чтобы решить эту задачу, Эйлер сделал специальные обозначения. Каждую часть суши (остров или берег реки) он обозначил кружком на бумаге, а затем соединил линиями те кружки, между которыми существуют мосты. Такие обозначения подчеркивают, что в этой задаче фактическое расположение, форма, длина и другие свойства объектов не представляют интереса, важны только связи между ними. Такая картинка на бумаге или на экране компьютера называется графом. Кружки — это его вершины, а линии — рёбра. Размышляя над этой и другими картинками из кружков и линий, Эйлер пришел к следующим выводам о графах:

  • Число нечётных вершин (вершин, к которым ведёт нечётное число рёбер) графа должно всегда быть чётно. То есть, просто не может существовать графа, который имел бы нечётное число нечётных вершин.

  • Если все вершины графа чётные, то его можно начертить не отрывая карандаша от бумаги, при этом начинать можно с любой вершины графа и завершить его в ней же.

  • Граф с более чем двумя нечётными вершинами невозможно начертить одним росчерком.

Граф кёнигсбергских мостов имел четыре нечётные вершины (т.е. все), следовательно, невозможно пройти по всем мостам, не проходя ни по одному из них дважды.

Отцом теории графов является Эйлер (1707-1782), решивший в 1736г. широко известную в то время задачу, называвшуюся проблемой Кёнигсбергских мостов. В городе Кёнигсберге (ныне Калининград) было два острова, соединенных семью мостами с берегами реки Преголя и друг с другом так, как показано на рисунке 5. Задача состояла в следующем: найти маршрут прохождения всех четырёх частей суши, который начинался бы с любой из них, кончался бы на этой же части и ровно один раз проходил по каждому мосту.

Легко, конечно попытаться решить эту задачу эмпирически, производя перебор всех маршрутов, но все попытки окончатся неудачей. Исключительный вклад Эйлера в решение этой задачи заключается в том, что он доказал невозможность такого маршрута. Для доказательства того, что задача не имеет решения, Эйлер обозначил каждую часть суши точкой (вершиной), а каждый мост – линией (ребром), соединяющей соответствующие точки. Получился “граф”. Этот граф показан на рисунке 2, где точки отмечены теми же буквами, что и четыре части суши на рисунке 1.

Утверждение о не существовании “положительного” решения у этой задачи эквивалентно утверждению о невозможности обойти специальным образом граф, представленный на рисунке 2.

Отправляясь от этого частного случая Эйлер обобщил постановку задачи и нашёл критерий существования обхода у данного графа, а именно граф должен быть связным и каждая его вершина должна быть инцидентна чётному числу рёбер.

Решение Эйлером задачи о Кёнигсбергских мостах привела к первой опубликованной работе по теории графов. Задачу об обходе мостов можно обобщить и получить следующую задачу теории графов: можно ли найти в данном графе G цикл, содержащий все вершины и все рёбра? Граф, в котором это, возможно, называется эйлеровым. Таким образом, эйлеров граф имеет эйлеров цикл – замкнутую цепь, содержащую все вершины и все рёбра. Ясно, что эйлеров граф должен быть связным. Если снять ограничения на замкнутость цепи, то граф называется полуэйлеровым.

Теорема 1(критерий): Граф с более чем одной вершиной имеет эйлеров цикл тогда и только тогда, когда он связный и каждая его вершина имеет чётную степень.

Доказательство: Предположим, что граф G имеет эйлеров цикл. Граф является связным, так как каждая вершина принадлежит циклу. Для всякой вершины v графа G каждый раз, когда эйлеров цикл проходит через v, он вносит 2 в степень v. Поэтому степень v чётная. Обратно, нужно показать, что каждый связный граф, у которого степени вершин чётные, имеет эйлеров цикл. Докажем эту теорему, используя индукцию по числу вершин. Поскольку теорема тривиально справедлива при n3, начнём индукцию с n=3.

Предположим, что каждый связный граф, имеющий менее k вершин, и все вершины которого обладают чётной степенью, содержит эйлеров цикл. Пусть G – связный граф, содержащий k вершин, степени которых чётные. Допустим, что v1 и v2 - вершины графа G. Поскольку граф G – связный, существует путь из v1 в v2 . Поскольку степень v2 – чётная, существует неиспользованное ребро, по которому можно продолжить путь. Поскольку граф конечный, то путь, в конце концов, должен вернуться в v1 , и эйлеров цикл С1 можно считать построенным. Если С1 является эйлеровым циклом для G, тогда доказательство закончено. Если нет, то пусть G/ - подграф графа G, полученный удалением всех рёбер, принадлежащих С1. Поскольку С1 содержит чётное число рёбер, инцидентных каждой вершине, каждая вершина подграфа G/ имеет чётную степень. Пусть e – ребро графа G/ , пусть Ge – компонента графа G/ , содержащая е. Поскольку G/ имеет менее, чем k, вершин, и у каждой вершины графа G/ чётная степень, граф G/ имеет эйлеров цикл. Пусть С2 . Далее у С1 и С2 имеется общая вершина, допустим, а. Теперь можно продолжить эйлеров цикл, начиная его в а, пройти С1 , вернуться в а, затем пройти С2 и вернуться в а. Если новый эйлеров цикл не является эйлеровым циклом для G , продолжаем использовать этот процесс, расширяя наш эйлеров цикл, пока, к конце концов, не получим эйлеров цикл для G.

Из теоремы 1 следует, что если в связном графе G нет вершин с нечётными степенями, то в G есть замкнутая цепь, содержащая все вершины и все рёбра графа G. Аналогичный результат справедлив для связных графов, имеющих некоторое число вершин с нечётными степенями.

Следствие 1(а): Пусть G- связный граф, в котором 2n вершин имеют нечётные степени, n1. Тогда множество рёбер графа G можно разбить на n открытых цепей.

Следствие 1(б): Пусть G- связный граф, в котором две вершины имеют нечётные степени. Тогда в G есть открытая цепь, содержащая все вершины и все рёбра графа G (и начинающаяся в одной из вершин с нечётной степенью, а кончающаяся в другой). Эйлеровым путём в графе называется путь, содержащий все рёбра графа. Эйлеров путь называется собственным, если он не является эйлеровым циклом.

Теорема 2: Если граф G обладает эйлеровым путём с концами А и В (А не совпадает с В), то граф G связный и А и В – единственные нечётные его вершины.

Доказательство: Связность графа следует из определения эйлерова пути. Если путь начинается в А, а заканчивается в другой вершине, то и А и В – нечётные даже если путь неоднократно проходил через А и В. В любую другую вершину графа путь должен был привести и вывести из неё, то есть все остальные вершины должны быть чётными.

Теорема 3: (обратная) Если граф G связный и А и В единственные нечётные вершины его, то граф G обладает эйлеровым путём с концами А и В.

Доказательство: Вершины А и В могут быть соединены ребром в графе, а могут быть соединены. Если А и В соединены ребром, то удалим его; тогда все вершины станут чётными. Новый граф (по теореме 1) обладает эйлеровым циклом, началом и концом которого может служить любая вершина. Начнём эйлеров путь в вершине А и кончим его в вершине А. Добавим ребро (А,В) и получим эйлеров путь с началом в А и концом в В. Если А и В не соединены ребром, то к графу добавим новое ребро (А,В), тогда все вершины его станут чётными. Новый граф (по теореме 1) обладает эйлеровым циклом. Начнём его из вершины А по ребру (А,В). Заканчивается путь тоже в вершине А. Если удалить теперь из полученного цикла ребро (А,В), то останется эйлеров путь с началом в В и концом в А или началом в А и концом В.

«Решение Кайзера».

На карте старого Кёнигсберга был ещё один мост, появившийся чуть позже и соединявший остров Ломзе с южной стороной. Своим появлением этот мост обязан самой задаче Эйлера-Канта. Произошло это при следующих обстоятельствах.

Император Вильгельм был известен своей прямотой, простотой мышления и солдатской «недалёкостью». Однажды, находясь на светском рауте, он чуть не стал жертвой шутки, которую с ним решили сыграть учёные умы, присутствующие на приёме. Они показали Кайзеру карту Кёнигсберга, и попросили попробовать решить эту знаменитую задачу, которая по определению была нерешаемой. К всеобщему удивлению, Кайзер попросил перо и лист бумаги, сказав, что решит задачу за полторы минуты. Ошеломлённый немецкий истеблишмент не мог поверить своим ушам, но бумагу и чернила быстро нашли.

Кайзер положил листок на стол, взял перо и написал следующее: «Приказываю построить восьмой мост на острове Ломзе». Так в Кёнигсберге и появился новый мост, который назвали «мостом Кайзера». А задачу с восемью мостами теперь мог решить даже ребёнок.




-80%
Курсы повышения квалификации

Организация и сопровождение олимпиадной деятельности учащихся

Продолжительность 72 часа
Документ: Удостоверение о повышении квалификации
4000 руб.
800 руб.
Подробнее
Скачать разработку
Сохранить у себя:
Материал по математике "Задача о Кенигсбергских мостах" (67.5 КB)

Комментарии 0

Чтобы добавить комментарий зарегистрируйтесь или на сайт