Меню
Разработки
Разработки  /  Информатика  /  Разное  /  Лекции по информатике Архитектура ЭВМ и ВС

Лекции по информатике Архитектура ЭВМ и ВС

Конспекты лекция по Архитектуре ЭВМ и ВС. Отобраны основные понятия, информация структурирована, приведены примеры и задания на дом.
22.02.2012

Описание разработки

Конспекты лекций по Архитектуре ЭВМ и ВС. Отобраны основные понятия, информация структурирована, приведены примеры и задания на дом.

Лекции по информатике Архитектура ЭВМ и ВС

Содержимое разработки

Министерство образования и науки Российской Федерации

ФГОУ СПО «Приморский политехнический колледж»





















Учебно-методический комплекс дисциплины

«Архитектура ЭВМ и вычислительных систем»

для специальности 230111 Компьютерные сети





















Владивосток

2011г.

Содержание







Введение

Совокупность всех программно доступных аппаратных средств процессора принято называть архитектурой.

Понятие архитектуры ЭВМ является комплексным и включает в себя:

  • структурную схему ЭВМ;

  • средства и способы доступа к элементам структурной схемы ЭВМ;

  • организацию и разрядность интерфейсов ЭВМ;

  • набор и доступность регистров;

  • организацию и способы адресации памяти;

  • способы представления и форматы данных ЭВМ;

  • набор машинных команд;

  • форматы машинных команд;

  • обработку нештатных ситуаций (прерываний).

ЭВМ – это средство, предназначенное для автоматической обработки информации – данных.

ВС – совокупность взаимосвязанных и взаимодействующих процессоров или вычислительных машин, периферийного оборудования и программного обеспечения, предназначенную для подготовки и решения задач пользователей

Если же рассматривать 3 компонента архитектуры (способ обработки информации, структуру устройств и сами устройства, составляющие ЭВМ и ВС), то можно считать в концептуальном плане ВС диалектической противоположностью ЭВМ.

 

ЭВМ

ВС

Обработка информации

Последовательная

Параллельная

Структура устройств

Фиксированная

Программируемая

Устройства

Неоднородные

Однородные

Термин «архитектура системы» часто употребляется как в узком, так и в широком смысле этого слова. В узком смысле под архитектурой понимается архитектура набора команд, т.е. то, какой машина предоставляется программисту.

Применительно к вычислительным системам термин «архитектура» может быть определен как распределение функций, реализуемых системой, между ее уровнями и определение границ между этими уровнями.

Составные части понятия «архитектура» можно определить следующей схемой.

Домашнее задание:

  1. Выучить понятия: архитектуры, ЭВМ, ВС.

  2. Подготовить рефераты на темы:

  1. «Гибридные вычислительные машины»;

  2. «Универсальные ЭВМ»;

  3. «Классификация ЭВМ по размерам и функциональным возможностям».

Раздел 1 Общие представления ЭВМ

    1. Классификация ЭВМ

Классификация ЭВМ по принципу действия: По принципу действия вычислительные машины делятся на три больших класса:

Цифровые вычислительные машины (ЦВМ) – вычислительные машины дискретного действия, работают с информацией, представленной в в цифровой форме. Наиболее широкое применение получили ЦВМ с электрическим представлением дискретной информации – электронные цифровые вычислительные машины, обычно называемые просто электронными вычислительными машинами (ЭВМ), без упоминания об их цифровом характере.

Аналоговые вычислительные машины (АВМ) – вычислительные машины непрерывного действия, работают с информацией, представленной в непрерывной (аналоговой) форме, т.е. в виде непрерывного ряда значений какой-либо физической величины (чаще всего электрического напряжения). Аналоговые вычислительные машины весьма просты и удобны в эксплуатации; программирование задач для решения на них, как правило, нетрудоемкое; скорость решения задач изменяется по желанию оператора и может быть сделана сколь угодно большой (больше, чем у ЦВМ), но точность решения задач очень низкая (относительная погрешность 2-5 %). На АВМ наиболее эффективно решать математические задачи, содержащие дифференциальные уравнения, не требующие сложной логики.

Гибридные вычислительные машины (ГВМ) – вычислительные машины комбинированного действия, работают с информацией, представленной и в цифровой, и в аналоговой форме; они совмещают в себе достоинства АВМ и ЦВМ. ГВМ целесообразно использовать для решения задач управления сложными быстродействующими техническими комплексами.

Классификация ЭВМ по этапам создания: По назначению ЭВМ можно разделить на три группы: универсальные (общего назначения), проблемно-ориентированные и специализированные.

Универсальные ЭВМ предназначены для решения самых различных инженерно-технических задач: экономических, математических, информационных и других задач, отличающихся сложностью алгоритмов и большим объемом обрабатываемых данных. Они широко используются в вычислительных центрах коллективного пользования и в других мощных вычислительных комплексах.

Проблемно-ориентированные ЭВМ служат для решения более узкого круга задач, связанных, как правило, с управлением технологическими объектами; регистрацией, накоплением и обработкой относительно небольших объемов данных; выполнением расчетов по относительно несложным алгоритмам; они обладают ограниченными по сравнению с универсальными ЭВМ аппаратными и программными ресурсами. К проблемно-ориентированным ЭВМ можно отнести, в частности, всевозможные управляющие вычислительные комплексы.

Специализированные ЭВМ используются для решения узкого круга задач или реализации строго определенной группы функций. Такая узкая ориентация ЭВМ позволяет четко специализировать их структуру, существенно снизить их сложность и стоимость при сохранении высокой производительности и надежности их работы. К специализированным ЭВМ можно отнести, например, программируемые микропроцессоры специального назначения; адаптеры и контроллеры, выполняющие логические функции управления отдельными несложными техническими устройствами, агрегатами и процессами; устройства согласования и сопряжения работы узлов вычислительных систем.

Классификация ЭВМ по размерам и функциональным возможностям: По размерам и функциональным возможностям ЭВМ можно разделить на: Исторически первыми появились большие ЭВМ, элементная база которых прошла путь от электронных ламп до интегральных схем со сверхвысокой степенью интеграции. Производительность больших ЭВМ оказалась недостаточной для ряда задач: прогнозирования метеообстановки, управления сложными оборонными комплексами, моделирования экологических систем и др. Это явилось предпосылкой для разработки и создания суперЭВМ, самых мощных вычислительных систем, интенсивно развивающихся и в настоящее время.

Появление в 70-х гг. малых ЭВМ обусловлено, с одной стороны, прогрессом в области электронной элементной базы, а с другой – избыточностью ресурсов больших ЭВМ для ряда приложений. Малые ЭВМ используются чаще всего для управления технологическими процессами. Они более компактны и значительно дешевле больших ЭВМ.

Дальнейшие успехи в области элементной базы и архитектурных решений привели к возникновению супермини-ЭВМ – вычислительной машины, относящейся по архитектуре, размерам и стоимости к классу малых ЭВМ, но по производительности сравнимой с большой ЭВМ.

Изобретение в 1969 г. микропроцессора (МП) привело к появлению в 70-х гг. еще одного класса ЭВМ – микроЭВМ. Именно наличие МП служило первоначально определяющим признаком микро ЭВМ. Сейчас микропроцессоры используются во всех без исключения классах ЭВМ. Многопользовательские микро ЭВМ – это мощные микро ЭВМ, оборудованные несколькими видеотерминалами и функционирующие в режиме разделения времени, что позволяет эффективно работать на них сразу нескольким пользователям. Персональные компьютеры (ПК) – однопользовательские микро ЭВМ, удовлетворяющие требованиям общедоступности и универсальности применения. Рабочие станции (work station) представляют собой однопользовательские мощные микро ЭВМ, специализированные для выполнения определенного вида работ (графических, инженерных, издательских и др.). Серверы (server) – многопользовательские мощные микро ЭВМ в вычислительных сетях, выделенные для обработки запросов от всех станций сети.

Домашнее задание: Классификация и этапы развития ЭВМ.

    1. Типы данных и типы команд

В ходе своей работы компьютер обменивается данными между своими составными частями. Под данными понимают информацию, обрабатываемую в компьютере. Данные в компьютере представляются в виде двоичных чисел.

Типы данных можно разделить на две категории: числовые и нечисловые. Среди числовых типов данных главными являются целые числа. Они бывают различной длины: обычно 8, 16, 32 и 64 бита. Целые числа применяются для подсчета различных предметов, для идентификации различных объектов, а также для других целей.

Хотя самые первые компьютеры работали в основном с числами, современные машины часто используются для выполнения нечисловых приложений, например, для обработки текстов или управления базами данных. Для этих приложений нужны другие, нечисловые, типы данных. Они часто поддерживаются командами уровня архитектуры набора команд. Здесь очень важны символы, хотя не каждый компьютер обеспечивает аппаратную поддержку для них.

К нечисловым относится также очень важный логический тип данных, содержащий булевы значения. Этих значений два: истина и ложь. Теоретически булево значение можно представлять единственным битом: 0 — ложь, 1 — истина (или наоборот). На практике же используется байт или слово, поскольку отдельные биты в байте не имеют собственных адресов и, следовательно, к ним трудно обращаться. В обычных системах применяется следующее соглашение: 0 означает ложь, а любое другое значение — истину.

Программа (для ЭВМ) – упорядоченная последовательность команд подлежащей обработки. Все вычисления предписанные алгоритмом решения задач должны быть представлены в виде программы, состоящие из последовательности управляющих слов - команд. Каждая команда содержит указание на конкретную выполняемую операцию места нахождения (адреса) операндов и ряд служебных признаков.

Операнды – это переменные значения, которых участвуют в операциях преобразования данных, списков (массив) всех переменных (входных данных промежуточных значений и результатов вычислений) является ещё одним неотъемлемым вычислением другой программы. Для доступа к программам, командам и операциям используют их адреса. В качестве адресов выступают номера ячеек памяти ЭВМ предназначенных для хранения объектов.

При выполнении каждой команды ЭВМ проделывает определенные стандартные действия, описанные ниже.

1. Согласно содержимому счетчика адреса команд, считывается очередная команда программы, код которой обычно заносится на хранение в специальный регистр УУ, который носит название регистра команд.

2. Счетчик команд автоматически изменяется так, чтобы в нем содержался адрес следующей команды. В простейшем случае для этой цели достаточно к текущему значению счетчика прибавить некоторую константу, определяющуюся длиной команды.

3. Считанная в регистр команд операция расшифровывается, извлекаются необходимые данные и над ними выполняются требуемые действия. Затем во всех случаях, за исключением команды останова, все описанные действия циклически повторяются.

После выборки команды останова ЭВМ прекращает обработку программы. Для выхода из этого состояния требуется либо запрос от внешних устройств, либо перезапуск машины.

Система команд любой ЭВМ обязательно содержит следующие группы команд обработки информации.

1. Команды передачи данных (перепись ), копирующие информацию из одного места в другое.

2. Арифметические операции, которым фактически обязана своим названием вычислительная техника. Конечно, для вычислительных действий в современном компьютере заметно уменьшилась, но они по-прежнему играют в программах важную роль. Отметим, что к основным арифметическим действиям обычно относятся сложение и вычитание ( последнее в конечном счете чаще всего тем или иным способом также сводится к сложению ). Что касается умножения и деления, то они во многих ЭВМ выполняются по специальным программам .

3. Логические операции, позволяющие компьютеру анализировать отображаемую информацию. Простейшими примерами могут служить сравнение, а также известные логические операции И, ИЛИ, НЕ (инверсия). Кроме того к ним часто добавляются анализ отдельных битов кода, их сброс и установка.

4. Сдвиги двоичного кода влево и вправо. Для доказательства важности этой группы команд достаточно вспомнить правило умножения столбиком: каждое последующее произведение записывается в такой схеме со сдвигом на одну цифру влево. В некоторых частных случаях умножение и деление вообще может быть заменено.

5. Команды ввода и вывода информации для обмена со внешними устройствами. В некоторых ЭВМ внешние устройства являются специальными служебными адресами памяти, поэтому ввод и вывод осуществляется с помощью команд переписи.

6. Команды управления, реализующие нелинейные алгоритмы. Сюда прежде всего следует отнести условный и безусловный переход, а также команды обращения к подпрограмме (переход с возвратом). Некоторые ЭВМ имеют специальные команды для организации циклов, но это не обязательно: цикл может быть сведен к той или иной комбинации условного и безусловного переходов.

С ростом сложности устройства процессора увеличивается и число команд, анализирующих состояние управляющих битов и воздействующих на них. Здесь для примера можно назвать биты режима работы процессора и биты управления механизмами прерываний от внешних устройств.

В последнее время все большую роль в наборе команд играют команды для преобразования из одного формата данных в другой (например, из 8-битного в 16-битный и т.п.), которые заметно упрощают обработку данных разного типа, но в принципе могут быть заменены последовательностью из нескольких более простых команд. Рассматривая систему команд, нельзя не упомянуть о двух современных взаимно конкурирующих направлениях в ее построении: компьютер с полным набором команд - CISC (Complex Instruction Set Computer) и с ограниченным набором - RISC (Reduced Instruction Set Computer). Разделение возникло из-за того, что основную часть времени компьютеру приходится выполнять небольшую часть из своего набора команд, остальные же используются эпизодически. Таким образом, если существенно ограничить набор операций до наиболее простых и коротких, зато тщательно оптимизировать их, получится достаточно эффективная и быстродействующая RISC-машина. Правда за скорость придется платить необходимостью программной реализации "отброшенных" команд, но часто это бывает приемлемо: например, для научных расчетов или машинной графики быстродействие существенно важнее проблем программирования. Подробнее вопросы, связанные с системой команд современных микропроцессоров будут рассмотрены ниже в этой главе.

Домашнее задание:

  1. Числовые и нечисловые данные.

  2. Группы команд обработки информации.

  3. RISC, CISC - процессоры.



1.3 Основные характеристики ЭВМ

Электронная вычислительная машина - комплекс технических и программных средств, предназначенный для автоматизации подготовки и решения задач пользователей.

Структуру ЭВМ определяет следующая группа характеристик:

  • ·технические и эксплуатационные характеристики ЭВМ (быстродействие и производительность, показатели надежности, достоверности, точности, емкость оперативной и внешней памяти, габаритные размеры, стоимость технических и программных средств, особенности эксплуатации т.д.);

  • характеристики и состав функциональных модулей базовой конфигурации ЭВМ; возможность расширения состава технических и программных средств; возможность изменения структуры;

  • ·состав программного обеспечения ЭВМ и сервисных услуг (операционная система или среда, пакеты прикладных программ, средства автоматизации программирования).

К основным характеристикам ЭВМ относятся:

Быстродействие это число команд, выполняемых ЭВМ за одну секунду. Сравнение по быстродействию различных типов ЭВМ, не обеспечивает достоверных оценок. Очень часто вместо характеристики быстродействия используют связанную с ней характеристику производительность.

Производительность это объем работ, осуществляемых ЭВМ в единицу времени.

Применяются также относительные характеристики производительности. Фирма Intel для оценки процессоров предложила тест, получивший название индекс iCOMP. При его определении учитываются четыре главных аспекта производительности: работа с целыми числами, с плавающей запятой, графикой и видео. Данные имеют 16- и 32-разрядной представление. Каждый из восьми параметров при вычислении участвует со своим весовым коэффициентом, определяемым по усредненному соотношению между этими операциями в реальных задачах. По индексу iCOMP ПМ Pentium 100 имеет значение 810, а Pentium 133-1000.

Емкость запоминающих устройств. Емкость памяти измеряется количеством структурных единиц информации, которое может одновременно находится в памяти. Этот показатель позволяет определить, какой набор программ и данных может быть одновременно размещен в памяти.

Наименьшей структурной единицей информации является бит - одна двоичная цифра. Как правило, емкость памяти оценивается в более крупных единицах измерения - байтах (байт равен восьми битам).

Емкость оперативной памяти (ОЗУ) и емкость внешней памяти (ВЗУ) характеризуются отдельно. Этот показатель очень важен для определения, какие программные пакеты и их приложения могут одновременно обрабатываться в машине.

Надежность это способность ЭВМ при определенных условиях выполнять требуемые функции в течение заданного периода времени. Высокая надежность ЭВМ закладывается в процессе ее производства. Применение сверхбольшие интегральные схемы (СБИС) резко сокращают число используемых интегральных схем, а значит, и число их соединений друг с другом. Модульный принцип построения позволяет легко проверять и контролировать работу всех устройств, проводить диагностику и устранение неисправностей.

Точность это возможность различать почти равные значения. Точность получения результатов обработки в основном определяется разрядностью ЭВМ, а также используемыми структурными единицами представления информации (байтом, словом, двойным словом).

Достоверность это свойство информации быть правильно воспринятой. Достоверность характеризуется вероятностью получения безошибочных результатов. Заданный уровень достоверности обеспечивается аппаратурно-программными средствами контроля самой ЭВМ. Возможны методы контроля достоверности путем решения эталонных задач и повторных расчетов. В особо ответственных случаях проводятся контрольные решения на других ЭВМ и сравнение результатов.

Домашнее задание:

Выучить наизусть основные характеристики ЭВМ.

    1. Определение основных характеристик ЭВМ

Практическая работа №1 «Основные характеристики ПК»

  1. Параметры быстродействия:

  • Правой кнопкой мыши нажать по Мой компьютер;

  • Выбрать вкладку Дополнительно;

  • В разделе Быстродействие нажать кнопку Параметры.

  • Переписать содержимое вкладок Визуальные эффекты и Дополнительно в тетрадь.

  1. Быстродействие ПК:

  • Нажать комбинацию клавиш Alt + Ctrl + Delete;

Выбрать Диспетчер Задач;

Выбрать вкладку Быстродействие;

Переписать содержимое вкладки Быстродействие в тетрадь.

  1. Определение производительности:

  • Нажать Пуск, затем выбрать Панель управления;

  • Выбрать пункт Производительность и обслуживание и выбрать Администрирование;

  • В открывшемся диалоговом окне нажать на ярлык Производительность;

  • Откроется график текущей активности Памяти\ Обмен страниц в сек., Процессора\ % загруженности процессора и Средняя длина очереди диска. Под графиком показатели в числах:

Последний:

Минимум:

Средний:

Максимум:

Длительность:

Заполнить числовые данные через 10 минут после открытия окна Производительность, т.к. Длительность проверки дольше длительности занятия. Данный продукт замеряет показатели вашего компьютера, основываясь на пяти ключевых моментах, и показывает оценку каждого из них, и, естественно, общую. Причем, общая оценка не может быть выше минимального показателя среди компонентов. На данный момент оценка производительности исчисляется значениями от 1 до 5,9. А такие оценки как 6,0 и выше компания Microsoft оставила на потом, то есть для более мощных компьютеров. Таким образом, если индекс производительности Windows показал оценку ниже 3, вам стоит задуматься об апгрейде или замене своей машины на новую. Если же показал выше 3, то вам не о чем беспокоиться.

  1. Определение оперативной памяти компьютера (Гб) и частоты процессора (ГГц):

  • Правой кнопкой мыши нажать по Мой компьютер;

  • Выбрать вкладку Общие;

  • Переписать в тетрадь размер оперативной памяти, тип и частоту процессора.

  1. Обьем жесткого диска и его модель:

  • Правой кнопкой мыши нажать по Мой компьютер;

  • Выбрать в меню Управление пункт Управление дисками;

  • Записать в тетрадь основной обьем и обьем каждого диска в отдельности;

  • Выбрать в пункте Диспетчер устройств подпункт Дисковые устройства;

  • Переписать в тетрадь модель винчестера.

  1. Покажите работу преподавателю.

  2. Ответьте определения быстродействия, производительности, ОЗУ, надежность, точность, достоверность.

Домашнее задание:

Запишите в тетрадь характеристики вашего домашнего компьютера.

Раздел 2 Принципы работы ЭВМ

    1. Классическая архитектура ЭВМ

Основы учения об архитектуре вычислительных машин заложил выдающийся американский математик Джон фон Нейман. Он подключился к созданию первой в мире ламповой ЭВМ ENIAC в 1944 г., когда ее конструкция была уже выбрана. В процессе работы во время многочисленных дискуссий со своими коллегами Г. Голдстайном и А. Берксом фон Нейман высказал идею принципиально новой ЭВМ. В 1946 г. ученые изложили свои принципы построения вычислительных машин в ставшей классической статье “Предварительное рассмотрение логической конструкции электронно-вычислительного устройства”. С тех пор прошло полвека, но выдвинутые в ней положения сохраняют актуальность и сегодня. Фон Нейман не только выдвинул основополагающие принципы логического устройства ЭВМ, но и предложил ее структуру, представленную на рисунке. 

Классическая архитектура (архитектура фон Неймана) — одно арифметико-логическое устройство (АЛУ), через которое проходит поток данных, и одно устройство управления (УУ), через которое проходит поток команд — программа. Это однопроцессорный компьютер.

В основу построения большинства компьютеров положены принципы, сформулированные Джоном фон Нейманом:

  1. Принцип программного управления — программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности.

  2. Принцип однородности памяти — программы и иные хранятся в одной и той же памяти; над командами можно выполнять те же действия, что и над данными.

  3. Принцип адресности — основная память структурно состоит из пронумерованных ячеек.

Положения фон Неймана:

  • Компьютер состоит из нескольких основных устройств (арифметико-логическое устройство, управляющее устройство, память, внешняя память, устройства ввода и вывода).

  • Арифметико-логическое устройство – выполняет логические и арифметические действия, необходимые для переработки информации, хранящейся в памяти.

  • Управляющее устройство – обеспечивает управление и контроль всех устройств компьютера (управляющие сигналы указаны пунктирными стрелками).

  • Данные, которые хранятся в запоминающем устройстве, представлены в двоичной форме.

  • Программа, которая задает работу компьютера, и данные хранятся  в одном и том же запоминающем устройстве.

  • Для ввода и вывода информации используются устройства ввода и вывода.

Один из важнейших принципов – принцип хранимой программы – требует, чтобы программа закладывалась в память машины так же, как в нее закладывается исходная информация.

Арифметико-логическое устройство и устройство управления в современных компьютерах образуют процессор ЭВМ. Процессор, который состоит из одной или нескольких больших интегральных схем называется микропроцессором или микропроцессорным комплектом.

Процессор – функциональная часть ЭВМ, выполняющая основные операции по обработке данных и управлению работой других блоков. Процессор является преобразователем информации, поступающей из памяти и внешних устройств.

Запоминающие устройства обеспечивают хранение исходных и промежуточных данных, результатов вычислений, а также программ. Они включают: оперативные (ОЗУ), сверхоперативные СОЗУ), постоянные (ПЗУ) и внешние (ВЗУ) запоминающие устройства.

Оперативные ЗУ хранят информацию, с которой компьютер работает непосредственно в данное время (резидентная часть операционной системы, прикладная программа, обрабатываемые данные). В СОЗУ хранится наиболее часто используемые процессором данные. Только та информация, которая хранится в СОЗУ и ОЗУ, непосредственно доступна процессору.

Внешние запоминающие устройства (накопители на магнитных дисках, например, жесткий диск или винчестер) с емкостью намного больше, чем ОЗУ, но с существенно более медленным доступом, используются для длительного хранения больших объемов информации. Например, операционная система (ОС) хранится на жестком диске, но при запуске компьютера резидентная часть ОС загружается в ОЗУ и находится там до завершения сеанса работы ПК.

ПЗУ (постоянные запоминающие устройства) и ППЗУ (перепрограммируемые постоянные запоминающие устройства) предназначены для постоянного хранения информации, которая записывается туда при ее изготовлении, например, ППЗУ для BIOS.

В качестве устройства ввода информации служит, например, клавиатура. В качестве устройства вывода – дисплей, принтер и т.д.

В построенной по схеме фон Неймана ЭВМ происходит последовательное считывание команд из памяти и их выполнение. Номер (адрес) очередной ячейки памяти, из которой будет извлечена следующая команда программы, указывается специальным устройством – счетчиком команд в устройстве управления.

По мере развития ЭВМ классическая архитектура претерпела существенные усовершенствования. Основное направление этих изменений — разгрузка центрального процессора от функций обмена информацией и передачи их специальным устройствам — контроллерам. Это повышает быстродействие компьютера.

Домашнее задание:

  1. Принципы Фон Неймана.

  2. В каком году были выдвинуты классический принцип построения ЭВМ.

  3. Определение классической архитектуры.


    1. Магистрально-модульный принцип построения ЭВМ

В основу архитектуры современных персональных компьютеров положен магистрально-модульный принцип. Модульный принцип позволяет потребителю самому комплектовать нужную ему конфигурацию компьютера и производить при необходимости ее модернизацию. Модульная организация компьютера опирается на магистральный (шинный) принцип обмена информацией между устройствами. Информационная связь между устройствами компьютера осуществляется через системную шину (другое название - системная магистраль). Шина - это кабель, состоящий из множества проводников.

Системная шина характеризуется тактовой частотой и разрядностью. Количество одновременно передаваемых по шине бит называется разрядностью шиныТактовая частота характеризует число элементарных операций по передаче данных в 1 секунду. Разрядность шины измеряется в битах, тактовая частота – в мегагерцах.

Магистраль (системная шина) включает в себя три многоразрядные шины: шину данных, шину адреса и шину управления, которые представляют собой многопроводные линии. К магистрали подключаются процессор и оперативная память, а также периферийные устройства ввода, вывода и хранения информации, которые обмениваются информацией на машинном языке (последовательностями нулей и единиц в форме электрических импульсов).

Шина данных. По этой шине данные передаются между различными устройствами. Данные по шине данных могут передаваться от процессора к какому-либо устройству, либо, наоборот, от устройства к процессору, т. е. шина данных является двунаправленной. К основным режимам работы процессора с использованием шины данных можно отнести следующие: запись/чтение данных из оперативной памяти, запись/чтение данных из внешней памяти, чтение данных с устройства ввода, пересылка данных на устройство вывода. Например, считанные из оперативной памяти данные могут быть переданы процессору для обработки, а затем полученные данные могут быть отправлены обратно в оперативную память для хранения. Таким образом, данные по шине данных могут передаваться от устройства к устройству в любом направлении.

Шина адреса. Выбор устройства или ячейки памяти, куда пересылаются или откуда считываются данные по шине данных, производит процессор. Каждое устройство или ячейка оперативной памяти имеет свой адрес. Адрес передается по адресной шине, причем сигналы по ней передаются в одном направлении - от процессора к оперативной памяти и устройствам (однонаправленная шина). Выбор абонента по обмену данными производит процессор, который формирует код адреса данного устройства, а для оперативной памяти код адреса ячейки памяти.

Разрядность шины адреса определяет объем адресуемой памяти (адресное пространство), то есть количество однобайтовых ячеек оперативной памяти, которые могут иметь уникальные адреса. Количество адресуемых ячеек памяти можно рассчитать по формуле:

N = 2I , где I - разрядность шины адреса.

Разрядность шины адреса постоянно увеличивалась и в современных персональных компьютерах составляет 36 бит. Таким образом, максимально возможное количество адресуемых ячеек памяти равно:

N = 236 = 68 719 476 736.

В персональных компьютерах величина адресного пространства процессора и величина фактически установленной оперативной памяти практически всегда различаются.

В первых отечественных персональных компьютерах величина адресного пространства была иногда меньше, чем величина реально установленной в компьютере оперативной памяти. Обеспечение доступа к такой памяти происходило на основе поочередного (так называемого постраничного) подключения дополнительных блоков памяти к адресному пространству.

В современных персональных компьютерах с 32-разрядной шиной адреса величина адресуемой памяти составляет 4 Гб, а величина фактически установленной оперативной памяти значительно меньше и составляет обычно 16 или 32 Мб.

Шина управления. По шине управления передаются сигналы, определяющие характер обмена информацией по магистрали. Сигналы управления показывают, какую операцию - считывание или запись информации из памяти - нужно производить, синхронизируют обмен информацией между устройствами и так далее.

Подключение отдельных модулей компьютера к магистрали на физическом уровне осуществляется с помощью контроллеров, адаптеров устройств (видеоадаптер, контроллер жестких дисков и т. д.), а на программном уровне обеспечивается загрузкой в оперативную память драйверов устройств, которые обычно входят в состав операционной системы.

Домашнее задание:

  1. Выучить назначение шин в устройстве ПК.

  2. Доклад: «Модель в информатике. Типы моделей».

  3. Определение алгоритма.

  4. Что такое тестирование и отладка программ.


    1. Этапы решения задач на ЭВМ

В зависимости от поставленной задачи, способа создания модели и предметной области различают множество типов моделей:

1. По области использования выделяют учебные, опытные, игровые, имитационные, научно-исследовательские модели.

2. По временному фактору выделяют статические и динамические модели.

3. По форме представления модели бывают математические, геометрические, словесные, логические, специальные (ноты, химические формулы и т.п.).

4. По способу представления модели делят на информационные (нематериальные, абстрактные) и материальные. Информационные модели, в свою очередь, делят на знаковые и вербальные, знаковые – на компьютерные и некомпьютерные.

Информационная модель – это совокупность информации, характеризующая свойства и состояние объекта, процесса или явления.

Вербальная модель - информационная модель в мысленной или разговорной форме.

Знаковая модель - информационная модель, выраженная специальными знаками, то есть средствами любого формального языка.

Математическая модель – система математических соотношений, описывающих процесс или явление.

Компьютерная модель - математическая модель, выраженная средствами программной среды.

Первоначально ЭВМ были созданы для вычислений, но постепенно на ней стали решать задачи по физике, химии, биологии, управлению технологическими процессами, рисованию мультфильмов и т.д., т.е. для решения задач с математикой непосредственно не связанных. В общем случае выделяют несколько этапов в подготовке и решении задач на ЭВМ.

На первом этапе анализируется условие задачи, определяются исходные данные и результаты, устанавливается зависимость между величинами, рассматриваемыми в задаче. Некоторые задачи имеют множество способов решения, поэтому необходимо выбрать способ решения (сделать постановку задачи, составить модель задачи). Для этого необходимо определить математические соотношения между исходными данными и результатом. Выполнив перевод задачи на язык математики, получают математическую модель.

Второй этап заключается в составлении алгоритма решения задачи по выбранной модели.

На третьем этапе алгоритм записывается на языке программирования и полученная программа вводится в ЭВМ. Далее проводится отладка программы, т.е. поиск и ошибок. Различают логические и семантические ошибки. Семантические ошибки возникают, когда программист неправильно записывает конструкции языка программирования. Семантические ошибки отыскать легче, т. к. современные трансляторы языков программирования способны их выявить. Логические ошибки возникают, когда инструкции записаны правильно, но последовательность их выполнения дает неверный результат.

Далее проводится тестирование, которое заключается в запуске программы с использованием контрольных примеров - тестов. Тесты выбирают таким образом, чтобы при работе с ними программа прошла все возможные ветви алгоритма, поскольку на каждом из них могут быть свои ошибки.

После отладки и тестирования программа выполняется с реальными исходными данными и проводится анализ полученных результатов, т.е. сопоставление их с экспериментальными фактами, теоретическими воззрениями и другой информацией об изучаемом объекте. Если результаты работы программы не удовлетворяют пользователей по каким-либо параметрам, то производится уточнение модели. При уточнении модели правится алгоритм программы, снова проводятся отладка, тестирование, расчеты и анализ результатов. Так продолжается до тех пор, пока результаты работы программы не будут удовлетворять знаниям об изучаемом объекте.

Общая схема решения задач с помощью ЭВМ выглядит так:

Домашнее задание:

  1. Подготовиться к тестированию.

  2. Рефераты:

  • «Трекболы, джойстики»;

  • «Дигитайзер»;

  • «Сканер»;

  • «Плоттер».



Раздел 3 Устройство компьютера

    1. Устройства ввода-вывода информации

Компьютер обменивается информацией с внешним миром с помощью периферийных устройств. Только благодаря периферийным устройствам человек может взаимодействовать с компьютером, а также со всеми подключенными к нему устройствами. Наиболее распространенные периферийные устройства приведены на рисунке:

Периферийные устройства делятся на устройства ввода и устройства вывода. Устройства ввода преобразуют информацию в форму понятную машине, после чего компьютер может ее обрабатывать и запоминать. Устройства вывода переводят информацию из машинного представления в образы, понятные человеку.

Ниже приведена классификация устройств ввода:

Самым известным устройством ввода информации является клавиатура – это стандартное устройство, предназначенное для ручного ввода информации. Работой клавиатуры управляет контроллер клавиатуры, расположенный на материнской плате и подключаемый к ней через разъем на задней панели компьютера. При нажатии пользователем клавиши на клавиатуре, контроллер клавиатуры преобразует код нажатой клавиши в соответствующую последовательность битов и передает их компьютеру. Отображение символов, набранных на клавиатуре, на экране компьютера называется эхом. Обычная современная клавиатура имеет, как правило, 101-104 клавиши, среди которых выделяют алфавитно-цифровые клавиши, необходимые для ввода текста, клавиши управления курсором и ряд специальных и управляющих клавиш. Существуют беспроводные модели клавиатуры, в них связь клавиатуры с компьютером осуществляется посредством инфракрасных лучей.

Наиболее важными характеристиками клавиатуры являются чувствительность ее клавиш к нажатию, мягкость хода клавиш и расстояние между клавишами. На долговечность клавиатуры определяется количеством нажатий, которые она рассчитана выдержать. Клавиатура проектируется таким образом, чтобы каждая клавиша выдерживала 30-50 миллионов нажатий.

К манипуляторам относят устройства, преобразующие движения руки пользователя в управляющую информацию для компьютера. Среди манипуляторов выделяют мыши, трекболы, джойстики.

Дигитайзер – это устройство для ввода графических данных, таких как чертежи, схемы, планы и т. п. Он состоит из планшета, соединенного с ним визира или специального карандаша. Перемещая карандаш по планшету, пользователь рисует изображение, которое выводится на экран.

Сканер – устройство ввода графических изображений в компьютер. В сканер закладывается лист бумаги с изображением. Устройство считывает его и пересылает компьютеру в цифровом виде. Во время сканирования вдоль листа с изображением плавно перемещается мощная лампа и линейка с множеством расположенных на ней в ряд светочувствительных элементов. Обычно в качестве светочувствительных элементов используют фотодиоды. Каждый светочувствительный элемент вырабатывает сигнал, пропорциональный яркости отраженного света от участка бумаги, расположенного напротив него. Яркость отраженного луча меняется из-за того, что светлые места сканируемого изображения отражают гораздо лучше, чем темные, покрытые краской. В цветных сканерах расположено три группы светочувствительных элементов, обрабатывающих соответственно красные, зеленые и синие цвета. Таким образом, каждая точка изображения кодируется как сочетание сигналов, вырабатываемых светочувствительными элементами красной, зеленой и синей групп. Закодированный таким образом сигнал передается на контроллер сканера в системный блок.

После ввода пользователем исходных данных компьютер должен их обработать в соответствии с заданной программой и вывести результаты в форме, удобной для восприятия пользователем или для использования другими автоматическими устройствам посредством устройств вывода.

Выводимая информация может отображаться в графическом виде, для этого используются мониторы, принтеры или плоттеры. Информация может также воспроизводиться в виде звуков с помощью акустических колонок или головных телефонов, регистрироваться в виде тактильных ощущений в технологии виртуальной реальности, распространяться в виде управляющих сигналов устройства автоматики, передаваться в виде электрических сигналов по сети.

Домашнее задание:

Доклады:

  • «Матричные принтеры»;

  • «Лазерный принтер»;

  • «Струйный принтер».


    1. Устройства отображения информации

Монитор (дисплей) является основным устройством вывода графической информации. По размеру диагонали экрана выделяют мониторы 14-дюймовые, 15-дюймовые, 17-дюймовые, 19-дюймовые, 21-дюймовые. Чем больше диагональ монитора, тем он дороже. По цветности мониторы бывают монохромные и цветные. Любое изображение на экране монитора образуется из светящихся разными цветами точек, называемых пикселями (это название происходит от PICture CELL - элемент картинки). Пиксель – это самый мелкий элемент, который может быть отображен на экране. Чем качественнее монитор, тем меньше размер пикселей, тем четче и контрастнее изображение, тем легче прочесть самый мелкий текст, а значит, и меньше напряжение глаз. По принципу действия мониторы подразделяются на мониторы с электронно-лучевой трубкой (Catode Ray Tube - CRT) и жидкокристаллические - (Liquid Crystal Display - LCD).

Для получения копий изображения на бумаге применяют принтеры, которые классифицируются:

    • по способу получения изображения: литерные, матричные, струйные, лазерные и термические;

    • по способу формирования изображения: последовательные, строчные, страничные;

    • по способу печати: ударные, безударные;

    • по цветности: чёрно-белые, цветные.

Наиболее распространены принтеры матричные, лазерные и струйные принтеры. Матричные принтеры схожи по принципу действия с печатной машинкой. Печатающая головка перемещается в поперечном направлении и формирует изображение из множества точек, ударяя иголками по красящей ленте. Красящая лента перемещается через печатающую головку с помощью микроэлектродвигателя. Соответствующие точки в месте удара иголок отпечатываются на бумаге, расположенной под красящей лентой. Бумага перемещается в продольном направлении после формирования каждой строчки изображения. Полиграфическое качество изображения, получаемого с помощью матричных принтеров низкое и они шумны во время работы. Основное достоинство матричных принтеров - низкая цена расходных материалов и невысокие требования к качеству бумаги.

Струйный принтер относится к безударным принтерам. Изображение в нем формируется с помощью чернил, которые распыляются через капилляры печатающей головки.

Лазерный принтер также относится к безударным принтерам. Он формирует изображение постранично. Первоначально изображение создается на фотобарабане, который предварительно электризуется статическим электричеством. Луч лазера в соответствии с изображением снимает статический заряд на белых участках рисунка. Затем на барабан наносится специальное красящее вещество – тонер, который прилипает к фотобарабану на участках с неснятым статическим зарядом. Затем тонер переносится на бумагу и нагревается. Частицы тонера плавятся и прилипают к бумаге.

Для ускорения работы, принтеры имеют собственную память, в которой они хранят образ информации, подготовленной к печати.

К основным характеристикам принтеров можно относятся:

- ширина каретки, которая обычно соответствую бумажному формату А3 или А4;

- скорость печати, измеряемая количеством листов, печатаемы в минуту;

- качество печати, определяемое разрешающей способностью принтера - количеством точек на дюйм линейного изображения. Чем разрешение выше, тем лучше качество печат;.

- расход материалов: лазерным принтером - порошка, струйным принтером - чернил, матричным принтером - красящих лент.

Плоттер (графопостроитель) – это устройство для отображения векторных изображений на бумаге, кальке, пленке и других подобных материалах. Плоттеры снабжаются сменными пишущими узлами, которые могут перемещаться вдоль бумаги в продольном и поперечном направлениях. В пишущий узел могут вставляться цветные перья или ножи для резки бумаги. Графопостроители могут быть миниатюрными, и могут быть настолько большими, что на них можно вычертить кузов автомобиля или деталь самолета в натуральную величину.

Домашнее задание:

  1. Характеристики и устройство работы принтеров.


    1. Устройства обработки информации

По своему назначению компьютер - универсальное техническое средство для работы человека с информацией.

По принципам устройства компьютер - это модель человека, работающего с информацией.

Какие устройства входят в состав компьютера. Имеются четыре основные составляющие информационной функции человека:

  • прием (ввод) информации;

  • запоминание информации (сохранение в памяти);

  • процесс мышления (обработка информации);

  • передача (вывод) информации.

Компьютер включает в себя устройства, выполняющие эти функции мыслящего человека:

  • устройства ввода;

  • устройства запоминания - память;

  • устройство обработки - процессор;

  • устройства вывода.

В ходе работы компьютера информация через устройства ввода попадает в память; процессор извлекает из памяти обрабатываемую информацию, работает с ней и помещает в нее результаты обработки; полученные результаты через устройства вывода сообщаются человеку. Чаще всего в качестве устройства ввода используется клавиатура, а устройства вывода - экран дисплея или принтер (устройство печати).

Рис. Информационный обмен в компьютере

Что такое данные и программа. И все-таки нельзя отождествлять "ум компьютера" с умом человека. Важнейшее отличие состоит в том, что работа компьютера строго подчинена заложенной в него программе, человек же сам управляет своими действиями.

В памяти компьютера хранятся данные и программы.

Данные - это обрабатываемая информация, представленная в памяти компьютера в специальной форме. Немного позже вы познакомитесь со способами представления данных в компьютерной памяти.

Программа - это описание последовательности действий, которые должен выполнить компьютер для решения поставленной задачи обработки данных.

    1. Клавиатура: состав, назначение деталей

Клавиатура - это стандартное клавишное устройство ввода, предназначенное для ввода алфавитно-цифровых данных и команд управления. Комбинация монитора и клавиатуры обеспечивает простейший интерфейс пользователя: с помощью клавиатуры руководят компьютерной системой, а с помощью монитора получают результат.

Клавиатура относится к стандартным средствам ПК, поэтому для реализации ее основных функций не требуется наличие специальных системных программ (драйверов). Необходимое программное обеспечение для работы с клавиатурой находится в микросхеме постоянной памяти в составе базовой системы ввода-вывода BIOS. Именно поэтому, ПК реагирует на нажатие клавиш на клавиатуре сразу после включения. Клавиатура стационарного ПК, как правило, - это самостоятельный конструктивный блок, а в портативных ПК она входит в состав корпуса.

Клавиатуры имеют по 101-104 клавише, размещенных по стандарту QWERTY (в верхнем левом углу алфавитной части клавиатуры находятся клавиши Q, W, E, R, T, Y). Отличаются они лишь незначительными вариантами расположения и формой служебных клавиш, а также особенностями, обусловленными используемым языком.

Набор клавиш клавиатуры разбит на несколько функциональных групп:

  • алфавитно-цифровые;

  • функциональные;

  • управления курсором;

  • служебные;

  • клавиши дополнительной панели.

Основное назначение алфавитно-цифровых клавиш - ввод знаковой информации и команд, которые набираются по буквам. Каждая клавиша может работать в двух режимах (регистрах) и, соответственно, может использоваться для ввода нескольких символов. Переключение между нижним регистром (ввод маленьких символов) и верхним регистром (ввод больших символов) осуществляется при нажатии клавиши (нефиксированное переключение) или с помощью клавиши (фиксированное переключение).

Группа функциональных клавиш включает двенадцать клавиш, обозначенных от F1 к F12, и расположена в верхней части клавиатуры. Функции этих клавиш зависят от конкретной, работающей в данный момент времени программы, а в некоторых случаях и от операционной системы. Жесткого закрепленного значения клавиш нет.

Клавиши управления курсором подают команды на передвижение курсора по экрану монитора относительно текущего изображения. Курсором называется экранный элемент, указывающий на место ввода знаковой информации. Эти клавиши разрешают руководить позицией ввода данных. Конкретное значение клавиш управления курсором может зависеть от программы. Тем не менее, чаще всего клавиши с стрелками служат для перемещения курсора в направлении указанном стрелкой или прокручивании текста по экрану, клавиши и прокручивают текст сразу на страницу вверх или вниз, соответственно, клавиша устанавливает курсор на начало строки, а клавиша - на конец.

Служебные клавиши используются для разных вспомогательных целей, таких как, изменение регистра, режимов вставки, образование комбинаций "горячих" клавиш и т.д. К этой группе относятся такие клавиши, как , , , , , , , , , и прочие.

Группа клавиш дополнительной панели дублирует действие цифровых клавиш, клавиш управления курсором и некоторых служебных клавиш. Основное назначение - ввод чисел, поэтому клавиши размещены в порядке, удобном для такой работы. Переход в режим дублирования клавиш управления курсором и, наоборот, осуществляется нажатием на клавишу . Кроме этого, клавиши дополнительной панели используются для ввода символов, имеющих расширенный код ASCII, но не имеющих соответствующей клавиши на клавиатуре.

Клавиатура ПК имеет свойство повторения знаков, что используется для автоматизации процесса ввода. Оно состоит в том, что при продолжительном нажатии клавиши начинается автоматический ввод символа, связанного с этой клавишей. При этом, настраиваемыми параметрами являются: интервал времени после нажатия, с завершением которого начинается автоматическое повторение символа и темп повторения (количество знаков за секунду).



    1. Устройство мышки. Принцип действия, состав

Мышка - это устройство управления манипуляторного типа. Она имеет вид небольшой пластмассовой коробочки с двумя (или тремя) клавишами. Перемещение мышки по поверхности синхронизировано с перемещением графического объекта, который называется курсор мышки, по экрану монитора. В отличие от клавиатуры, мышка не является стандартным устройством управления, поэтому для работы с ней требуется наличие специальной системной программы - драйвера мышки. Драйвер мышки предназначен для интерпретации сигналов, поступающих от мышки, а также для обеспечения механизма передачи информации о положении и состоянии мышки операционной системе и другим прикладным программам. Драйвер мышки устанавливается при первом подключении мышки или при загрузке операционной системы.

Компьютером руководят перемещения мышки и кратковременные нажатия ее клавиш (эти нажатия называются кликами). Мышка не может непосредственно использоваться для ввода знаковой информации, ее принцип управления базируется на механизме событий. С точки зрения драйвера, все перемещения мышки и клики ее клавиш рассматриваются как события, анализируя которые, драйвер устанавливает, состоялось ли событие и в каком месте экрану находится в настоящее время курсор мышки. Эти данные передаются в прикладную программу, с которой работает пользователь, и по ним программа может определить, какую команду имел в виду пользователь и приступить к ее выполнению.

К числу параметров мышки, которыми может настроить пользователь, относят: чувствительность (характеризует величину перемещения курсора мышки по экрану при заданном перемещении мышки), функции левой и правой клавиш, а также чувствительность к двойному клику (определяет максимальный промежуток времени, на протяжении которого два отдельных клика клавиши рассматриваются как один двойной клик).


    1. Устройство монитора

Первые компьютеры мониторов не имели, был лишь набор мигающих светодиодов и распечатка результатов на принтере. С развитием компьютерной техники появились мониторы и сейчас они являются необходимой частью базовой конфигурации персонального компьютера.

Монитор (дисплей) - это стандартное устройство вывода, предназначенное для визуального отображения текстовых и графических данных. В зависимости от принципа действия, мониторы делятся на:

  • мониторы с электронно-лучевой трубкой;

  • дисплеи на жидких кристаллах.

Монитор с электронно-лучевой трубкой

Монитор с электронно-лучевой трубкой похож на телевизор. Электронно-лучевая трубка представляет собой электронно-вакуумное устройство в виде стеклянной колбы, в горловине которой находится электронная трубка, на дне - экран со слоем люминофора. При нагревании, электронная пушка излучает поток электронов, которые с высокой скоростью двигаются к экрану. Поток электронов (электронный луч) проходит через фокусирующую и отклоняющую катушку, которая направляет его в определенную точку люминофорного покрытия экрана. Под действием электронов, люминофор излучает свет, который видит пользователь. Люминофор характеризуется временем излучения после действия электронного потока. Электронный луч двигается довольно быстро, расчерчивая экран строками слева направо и сверху вниз. Во время развертки, то есть передвижения по экрану, луч влияет на те элементарные участки люминофорного покрытия, где может появиться изображение. Интенсивность луча постоянно изменяется, что обуславливает свечение соответствующих участков экрана. Поскольку, свечение исчезает очень быстро, электронный луч должен непрерывно пробегать по экрану, восстанавливая его.

Время излучения и частота обновления свечения должны соответствовать друг другу. Преимущественно, частота вертикальной развертки равна 70-85 Гц, то есть свечение на экране возобновляется 70-85 раз в секунду. Снижение частоты обновления приводит к миганию изображения, что утомляет глаза. Соответственно, повышение частоты обновления приводит к размыванию или удвоению контуров изображения.

Мониторы могут иметь как фиксированную частоту развертки, так и разные частоты в некотором диапазоне. Существует два режима развертки: Interlaced (черезстрочная) и Non Interlaced (построчная). Обычно, используют порядковую развертку. Луч сканирует экран построчно сверху вниз, формируя изображение за один проход. В режиме черезстрочной развертки, луч сканирует экран сверху вниз, но за два прохода: сначала нечетные строки, потом четные. Проход при черезстрочной развертке занимает вдвое меньше времени, чем формирование полного кадра в режиме построчной развертки. Поэтому время обновления для двух режимов одинаково.

Экраны для мониторов с электронно-лучевой трубкой бывают выпуклые и плоские. Стандартный монитор - выпуклый. В некоторых моделях используют технологию Trinitron, в которой поверхность экрана имеет небольшую кривизну по горизонтали, по вертикали экран абсолютно плоский. На таком экране наблюдается меньше бликов и улучшено качество изображения. Единственным недостатком можно считать высокую цену.

Дисплеи на жидких кристаллах (Liquid Crystal Display - LCD)

В дисплеях на жидких кристаллах безбликовый плоский экран и низкая мощность потребления электрической энергии (5 Вт, по сравнению, монитор с электронно-лучевой трубкой потребляет 100 Вт).

Существует три вида дисплеев на жидких кристаллах:

  • монохромный с пассивной матрицей;

  • цветной с пассивной матрицей;

  • цветной с активной матрицей.

В дисплеях на жидких кристаллах поляризационный фильтр создает две разные световые волны. Световая волна проходит сквозь жидкокристаллическую ячейку. Каждая ячейка имеет свой цвет. Жидкие кристаллы представляют собой молекулы, которые могут перетекать как жидкость. Это вещество пропускает свет, но под действием электрического заряда, молекулы изменяют свою ориентацию.

В дисплеях на жидких кристаллах с пассивной матрицей каждой ячейкой руководит электрический заряд (напряжение), который передается через транзисторную схему в соответствии с расположением ячеек в строках и столбцах матрицы экрана. Ячейка реагирует на импульс поступающего напряжения.

В дисплеях с активной матрицей каждая ячейка оснащена отдельным транзисторным ключом. Это обеспечивает высшую яркость изображения чем в дисплеях с пассивной матрицей, поскольку каждая ячейка находится под действием постоянного, а не импульсного электрического поля. Соответственно, активная матрица потребляет больше энергии. Кроме того, наличие отдельного транзисторного ключа для каждой ячейки усложняет производство, что, в свою очередь, увеличивает их цену.

Монохромные и цветные мониторы

По набору оттенков отображаемых цветов, мониторы делятся на цветные и черно-белые (монохромные). Монохромные мониторы дешевле, но не подходят для работы с операционной системой Windows. В цветных мониторах используют более сложные методы формирования изображения. В монохромных электронно-лучевых трубках существует одна электронная пушка, в цветных - три. Экран монохромной электронно-лучевой трубки покрыт люминофором одного цвета (с желтым, белым или зеленым излучением). Экран цветной электронно-лучевой трубки состоит из люминофорных триад (с красным, зеленым и синим излучением). Комбинации трех цветов предоставляет великое множество выходных оттенков.

Основные параметры мониторов

С точки зрения пользователя, основными характеристиками монитора являются размер по диагонали, разрешающая способность, частота регенерации (обновление) и класс защиты.

Размер монитора. Экран монитора измеряется по диагонали в дюймах. Размеры колеблются от 9 дюймов (23 см) до 42 дюймов (106 см). Чем больше экран, тем дороже монитор. Распространенными являются размеры 14, 15, 17, 19 и 21 дюйма. Мониторы большого размера лучше использовать для настольных издательских систем и графических работ, в которых нужно видеть все детали изображения. Оптимальными для массового использования являются 15- и 17-дюймовые мониторы.

Разрешающая способность. В графическом режиме работы изображение на экране монитора состоит из точек (пикселов). Количество точек по горизонтали и вертикали, которые монитор способный воссоздать четко и раздельно называется его разрешающей способностью. Выражение "разрешающая способность 800х600" означает, что монитор может выводить 600 горизонтальных строк по 800 точек в каждой. Стандартными являются такие режимы разрешающей способности: 800х600, 1024х768, 1152х864 и выше. Это свойство монитора определяется размером точки (зерна) экрана. Размер зерна экрана современных мониторов не превышает 0,28 мм. Чем больше разрешающая способность, тем лучше качество изображения. Качество изображения также связанно с размером экрана. Так, для удовлетворительного качества изображения в режиме 800х600 на 15-дюймовом мониторе можно ограничиться размером зерна 0,28 мм, для 14-дюймового монитора с тем же размером зерна в одном и том же видеорежиме качество мелких деталей изображения будет немного хуже.

Частота регенерации. Этот параметр иначе называется частотой кадровой развертки. Он показывает сколько раз в секунду монитор может полностью обновить изображение на экране. Частота регенерации измеряется в герцах (Гц). Чем больше частота, тем меньше усталость глаз и больше времени можно работать непрерывно. Сегодня минимально допустимой считается частота в 75 Гц, нормальной - 85 Гц, комфортной - 100 Гц и больше. Этот параметр зависит и от характеристик видеоадаптера.

Класс защиты монитора определяется стандартом, которому отвечает монитор с точки зрения требований техники безопасности. Сейчас общепринятыми считаются международные стандарты TCO-92, TCO-95 и ТСО-99, ограничивающие уровни электромагнитного излучения, эргометрические и экологические нормы, в рамках, безопасных для здоровья человека.

Видеоадаптер

Работой монитора руководит специальная плата, которую называют видеоадаптером (видеокартой). Вместе с монитором видеокарта создает видеоподсистему персонального компьютера. В первых компьютерах видеокарты не было. В оперативной памяти существовал экранный участок памяти, куда процессор заносил данные об изображении. Контроллер экрана считывал данные об яркости отдельных точек экрана из ячеек памяти и руководил разверткой горизонтального луча электронной пушки монитора.

При переходе от монохромных мониторов к цветным и с увеличением разрешающей способности экрана, участка видеопамяти стало недостаточно для хранения графических данных, а процессор не успевал обрабатывать изображения. Все операции, связанные с управлением экрана были отведены в отдельный блок - видеоадаптер.

Видеоадаптер имеет вид отдельной платы расширения, которую вставляют в определенный слот материнской платы (в современных ПК это слот AGP). Видеоадаптер выполняет функции видеоконтроллера, видеопроцессора и видеопамяти.

За время существования ПК изменилось несколько стандартов видеоадаптеров:
  • MDA (Monochrom Display Adapter) -монохромный,

  • CGA(Color Graphics Adapter) - 4 цвета,

  • EGA(Enchanced Graphics Adapter) -16 цветов,

  • VGA (Video Graphics Array) - 256 цветов,

  • SVGA (Super VGA) - до 16,7 млн. цветов.

На эти стандарты рассчитанны все программы, предназначенные для IBM-совместимых компьютеров.

Сформированное графическое изображение хранится во внутренней памяти видеоадаптера, которая называется видеопамятью. Необходимая емкость видеопамяти зависит от заданной разрешающей способности и палитры цветов, поэтому для работы в режимах с высокой разрешающей способностью и полноцветной гаммой нужно как можно больше видеопамяти. Если еще недавно типичными были видеоадаптеры с 2-4 Мбайт видеопамяти, то уже сегодня нормальной считается емкость в 32-64 Мбайт. Большинство современных видеокарт обладает возможностю расширения объема видеопамяти до 128 Мбайт, а также свойством видеоакселерации. Суть этого свойства состоит в том, что часть операций по построению изображения может происходить без выполнения математических вычислений в основном процессоре, а чисто аппаратным путем - преобразованием данных в специальных микросхемах видеоакселератора.

Видеоакселераторы могут входить в состав видеоадаптера, а могут поставляться в виде отдельной платы расширения, устанавливаемой на материнской плате и подсоединяемой к видеокарте. Различают два типа видеоакселераторов: для плоской (2D) и трехмерной (3D) графики. Первые более эффективны для работы с прикладными программами общего назначения и оптимизованные для ОС Windows, другие ориентированы на работу с разными мультимедийними и развлекательными программами.



    1. Контрольная работа «Современные разработки устройств ПК»



Раздел 4. Системный блок

    1. Корпус. Блок-питания

Корпус – это коробка, определяет внешний вид компьютера. Состоит из несущего шасси, внешних стенок или единого чехла, блока питания и вентилятора. Корпус компьютера – защищает комплектующие от механических повреждений и внешнего воздействия, поддерживает внутри необходимый температурный режим и является основной для дальнейшего обновления системы.

Самым основным компонентом корпуса является блок питания, выбирая корпус, качество и надежность именно этого элемента должно быть приоритетным, так как от него зависит стабильность подачи питания ко всем компонентам ПК, а также их сохранность при скачках напряжения. Блок-питания – преобразует переменный ток сети электропитания в постоянный ток низкого напряжения. Постоянное увеличение производительности компьютера, заставляет повышать мощность блока питания.

Существует два типа расположения блока питания в корпусе - это горизонтальное и вертикальное, в плохо спроектированном корпусе блок питания может препятствовать установке массивного куллера процессора, поэтому стоит проверить и этот параметр.

Сегодня в свободной продаже имеются корпуса, в которых установлены блоки питания мощностью свыше 500 ватт. Конечно, этой мощности хватит, для того чтобы обеспечить качественное питание даже очень производительной системе и многим ее дополнительным компонентам, но потребляемая электроэнергия такими блоками питания достаточно высока и во многих случаях покупка корпусов с такими блоками питания просто неоправданна, можно ограничиться покупкой 400 ваттного блока, которого вполне достаточно.

Не забудьте проверить количество разъемов питания, при дефиците которых могут возникнуть проблемы с подключением дополнительных устройств, таких как жесткие диски, приводы оптических дисков и видеокарты, которым необходимо дополнительное питание.

Следующее, на что необходимо обратить внимание при покупке -  корпус должен быть достаточно "проветриваемым". Это значит, что потоки горячего воздуха должны выдуваться из корпуса, одновременно с этим потоки прохладного воздуха должны поступать в корпус и эта циркуляция должна быть достаточной для того, чтобы нормально охлаждать все элементы. Чем меньше греется процессор, жесткий диск, видеокарта или чипсет материнской платы, тем надежнее и дольше служат все эти компоненты, поэтому при выборе корпуса стоит уделить особое внимание эффективности его охлаждения.

Для нормальной циркуляции воздуха внутри корпуса должны быть установлены вентиляторы - на фронтальной стенке должен присутствовать вентилятор, который загоняет воздух внутрь корпуса, а на тыловой стенке - вентилятор который выдувает воздух из корпуса. Также корпус может быть дополнен вентиляторами на верхней стенке и боковой крышке корпуса, что только положительно сказывается на качестве охлаждения. Обычно производители корпусов устанавливают вентиляторы либо 80х80 мм, либо 120х120. Второй вариант более удобен тем, что работают такие вентиляторы на меньших оборотах ("тихоходные"), что позволяет снизить уровень шума. Но вместе с потоками воздуха в корпус попадают мелкие частички пыли, вследствие чего начинает пылиться все содержимое корпуса. Для того чтобы избежать этого отверстия для вентиляторов закрывают тканевые фильтры, которые сдерживают пыль, не давая проникнуть ей в корпус.

Практически все корпуса, цена которых выше $100 имеют качественные бесшумные вентиляторы и фильтры от пыли. Отличным вариантом будет покупка алюминиевого корпуса, как известно этот материал обладает высокой теплоотдачей и поэтому сам корпус выступает в роли радиатора. Качеством своих алюминиевых корпусов может похвастаться фирма Thermaltake, которая выпускает не только качественные, но и красивые корпуса.

Выше были перечислены самые основные моменты, которые должны учитываться при покупке корпуса ПК, но существует ряд других факторов, которые тоже стоит брать во внимание. В хорошем корпусе не должны быть острых кромок, о которые можно порезаться, вставляя или вынимая какие-либо компоненты или протирая корпус от пыли, обратите внимание на количество отсеков 5,25 ", если их мало, то, приобретая дополнительные жесткие диски или приводы, будет затруднительно их установить. Дизайн и внешний вид корпуса - личный выбор каждого, благо в продаже имеется колоссальное количество всевозможных моделей различных производителей, нужно лишь, чтобы соблюдались вышеперечисленные требования, от себя могу пожелать удачной покупки, которая будет полезна долгие годы.

Некоторые моменты при выборе блоков питания, корпусов

 Если блок питания в корпусе расположен вертикально, он может затруднить доступ к материнской плате и не все кулеры можно установить в такой корпус. Также не самым лучшим образом организовано охлаждение внутри корпуса. Оптимально горизонтальное расположение блока питания.

 Корпус желательно брать с толстым железом для лучшего охлаждения HDD, шумоизоляции, защиты от радиации и наличием в задней стенке места под кулер. По российским стандартам минимальная толщина железа должна быть не менее 0,8 мм.

 На БП иногда встречается строка noise killer. Означает она, что в блоке частота оборотов вентилятора регулируются автоматически в зависимости от температуры. При невысокой температуре вентилятор крутится на минимальных оборотах и потому его почти не слышно.

 Если разобрать БП, то по номиналам электролитических конденсаторов можно судить о мощности блоков. Два входных конденсатора по 330 мкФ - это максимум 250 Вт. На 300 Вт ставят обычно 470 или 680 мкФ. Также для оценки качества БП обращают внимание на качество пайки, отсутствие деталей, размеры трансформаторов, радиаторов. Считается, что хороший БП не может вешать меньше 2 кг.

PFC - устройство внутри БП для уменьшения паразитной реактивной мощности. Наличие PFC никак не влияет на показания квартирного электросчетчика, а имеет значение лишь для повышения надежности электропроводки помещения, рассчитанную на определенный максимальный ток. PFC бывает пассивное и активное. Блок с пассивным PFC почти никакой разницы не имеет с БП без него, коэффициент мощности примерно 0,7. У блоков с активным PFC коэффициент примерно 0,95.

Доклады:

Типы корпусов:

  • Desktop:
  • Slim
  • Mini tower
  • Midi (middle) tower
  • Barebone
    1. Материнская плата, дисковод

Материнская плата – это сложная многослойная печатная плата к которой подключаются остальные компоненты компьютера. Материнская плата покрыта сетью медных проводников-дорожек по ним электропитание и данные поступают к смонтированным на плате микросхемам и слотам, в которые вставляются остальные устройства компьютера. Материнская плата – печатная плата, на которой монтируется чипсет и прочие компоненты компьютерной системы. Название происходит от английского motherboard, иногда используется сокращение MB или слово mainboard – главная плата. Это определение Материнской платы было взято нами из википедии

Материнскую плату по праву можно назвать основным компонентом компьютера. Приоритет материнской платы не случаен: она обеспечивает связь между компонентами и их функционирование в "правильном" режиме, необходимое питание элементов и контроль состояния важнейших узлов. 
Материнская плата является своеобразным фундаментом для будущей системы, задавая основные характеристики стабильности и быстродействия, возможности наращивания мощности и, соответственно, сроки морального старения компьютера. Основные возможности материнской платы определяет чипсет (набор системной логики). 
Основными вопросами при выборе Материнской платы является ее совместимость с видеокартами и процессором. В этом и хотим Вам помочь.

Совместимость видеокарты и материнской платы

Первое правило – интерфейс (AGP, PCI-Е) должен совпадать у материнской платы и видеокарты (видеокарты PCI-E 2.0 работают с материнскими платами PCI-E, но медленнее). 
Второе правило – обратить внимание на поддержку одинакового типа технологий, если материнская плата поддерживает SLI, то именно SLI должны поддерживать и видеокарты. Если материнская плата поддерживает CrossFire, то видеокарты должны поддерживать CrossFire. 
Если речь идет об апгрейде компьютера, то полезным может быть раздел: Совместимость видеокарты и материнской платы. Проблемы с AGP на сайте Мир NVIDIA.

Совместимость материнской платы с процессором

Вопрос более тонкий, правила на все случаи написать не получится. Но вы сможете найти наиболее достоверную информацию о совместимости материнской платы и процессора на официальных сайтах производителей материнских плат.

Характеристики материнской платы
  • Чипсет - это набор микросхем, отвечающий за взаимодействие процессора с оперативной памятью, видеокартой и контроллерам периферийных устройств. Современные чипсеты, как правило, состоят из двух микросхем: "Южного моста" и "Северного моста". Чем круче чипсет тем дороже материнская плата. Чипсет изображенный на картинке слева подойдет для экстримальных геймеров. 

    Северный мост (англ. Northbridge), MCH (Memory controller hub), системный контроллер — обеспечивает подключение процессора к узлам, использующим высокопроизводительные шины: оперативная память, видеокарта. Для подключения процессора к системному контроллеру могут использоваться такие FSB-шины, как Hyper-Transport (это двунаправленная последовательно/параллельная компьютерная шина с высокой пропускной способностью и малыми задержками) и SCI. Обычно к системному контроллеру подключается оперативная память (ОП). В таком случае он содержит в себе контроллер памяти. Таким образом, от типа применённого системного контроллера обычно зависит максимальный объём ОП, а также пропускная способность шины памяти персонального компьютера. Но в настоящее время имеется тенденция встраивания контроллера ОП непосредственно в процессор (например, контроллер памяти встроен в процессор в AMD K8 и Intel Core i7), что упрощает функции системного контроллера и снижает тепловыделение. 

    Южный мост (англ. Southbridge), ICH (I/O controller hub), периферийный контроллер — содержит контроллеры периферийных устройств (жёсткого диска, Ethernet, аудио), контроллеры шин для подключения периферийных устройств (шины PCI, PCI-Express и USB)
    Популярные серии материнских плат ASUS P5B, ASUS P5Q.

  • Форм-фактор материнской платы — стандарт, определяющий размеры материнской платы для персонального компьютера, места ее крепления к корпусу; расположение на ней интерфейсов шин, портов ввода/вывода, сокета центрального процессора (если он есть) и слотов для оперативной памяти, а также тип разъема для подключения блока питания.

На данный момент в настольных компьютерах распространены форм-факторы типа ATX и mATX (microATX). Рекомендуется брать платы с форм-фактором ATX. Так как они заметно больше по габаритам, то, соответственно, больше количество слотов, имеющихся на плате, удобнее их расположение, а также расположение чипсета и других разъёмов.

  • Сокет (Socket) - это разъем для установки процессора на материнской плате. Например если в маркировки материнской платы указан сокет AM3, то процессор нужен с сокетом AM3. На картинке справа показано как он выглядит. 

  • Сокеты для процессоров Intel - LGA 775 (Celeron, Pentium 4, Pentium D, Pentium Dual Core, Core 2 Duo, Core 2 Quad, Core 2 Extreme), LGA 1336 (Core i7).

  • Сокеты для процессоров AMD - Socket AM2, Socket AM2+, Socket AM3 (Athlon 64x2, Athlon x2, Phenom 64x3, Phenom 64x4, Phenom II x3, Phenom II x4).

  • Разъемы под ОП: правило простое – чем они дальше и выше от разъёма для видеокарт – тем лучше, если они близко и видеокарта длинная, то будет проблемотично вставлять память. Правильней будет, если они расположены ближе к сокету и имеют разный окрас (для наглядной установки модулей памяти в двухканальный режим). На сегодняшний день память типа DDR уже устарела, поэтому используется DDR2 или DDR3-память. При покупке платы следует обращать внимание на то, какую частоту памяти она поддерживает. Сейчас распространена память типа DDR2 с частотами 667, 800 и 1066 МГц и DDR3 с 1066, 1333, 1600, 1800 и 2000 МГц. Существуют платы с поддержкой DDR2 и DDR3, я считаю что такие гибриды не стоит использовать лучше что-то одно.

  • Поддержка технологий NVIDIA SLI и ATI Crossfire: Надо обратить внимание на поддержку одинакового типа технологий, если материнская плата поддерживает SLI, то именно SLI должны поддерживать и видеокарты. Если материнская плата поддерживает CrossFire, то видеокарты должны поддерживать CrossFire.
  • Интегрированные устройства: Сейчас практически во всех современных платах встроены звуковая и сетевая карты. Это нормально, но если там встроенная видеокарта, то эта плата подойдет для офисного компьютера.

Для того чтобы выбрать материнскую плату необходимо знать все ее характеристики. Также важно определить для каких целей будет использоваться материнская плата. К примеру, если вы хотите собрать игровой компьютер, то выбирать материнскую плату надо с поддержкой современных технологий. Лучше будет если на ней два разъема под видеокарту (установка двух одинаковых видеокарт одного производителя даст значительный прирост производительности в играх), четыре разъема под оперативную память, поддержка двухканального режима, плюс ко всему на ней не должно быть встроенной видеокарты, а если вы хотите собрать компьютер для офиса, то здесь подойдет недорогая материнская плата со встроенной видео картой. 

Дисководы

В отличие от CD-R приводов, CD-RW компьютерные приводы могут перезаписывать CD-RW диски. CD-R и CD-RW приводы, прежде всего, доступны только для компьютеров, таким образом, вам придётся записывать на них информацию при помощи вашего компьютера. В дополнение к ограничениям аппаратных средств, кодирование видеопотока в MPEG-2 требует чрезвычайно мощного и дорогого компьютерного оборудования, к тому же алгоритмы не работают в режиме реального времени. Они были присоединены к носителям, которые соединяются с блоком, расположенным удалённо от главного компьютера. Сменный носитель с его портативным компьютерным приводом просто отсоединяется от блока при необходимости. В некоторых случаях, портативный компьютерный привод присоединяется для последовательной операции. В других случаях, компьютерный привод соединяется для параллельной операции.

Такие изменения обычно увеличивают стоимость и сложность компьютерной системы и удалённой памяти. Способность одной принимающей рамки автоматически приспособлять различные сменные носители, а также последовательно и параллельно подсоединённые компьютерные приводы максимизирует гибкость компьютерной системы и помогает избежать необходимой потребности во внесении изменений в блок или портативные компьютерные приводы. Другой вариант - блок, автоматически приспособлённый для различных компьютерных дисковых носителей без включения упомянутой универсальной рамки. В этом случае, блок в принимающей рамке отделён от главного компьютера. Портативные компьютерные приводы, включённые соответствующими сменными носителями и связанные для последовательного или параллельного обмена информацией с другими компьютерными дисками в блоке – называются дисководами.

Виды приводов:

  • CD-ROM – только считывает разнообразную информацию с оптических дисков. Одним из его основных параметров является максимальная скорость считывания информации и на сегодня большинство CD-ROM’ов выпускаются со скоростью считывания 52х.

  • CD-RW – позволяет не только считывать информацию, но и записывать ее либо на CD-R диски, предназначенные для одноразовой записи, либо на CD-RW диски, позволяющие перезаписывать информацию многократно. CD-RW-привод позволяет записывать информацию на CD-RW диск как на обычную магнитную дискету. Для этого был разработанный стандарт пакетной записи UDF, в которой диск форматируется специальной программой “INCD” или “DIRECTCD”, после чего используется как дискета.

  • В настоящее время появились также внешние CD-RW-дисководы, которые не встраиваются в системный блок, а подключаются к компьютеру с помощью USB-порта. Преимуществом этого CD-RW-привода является то, что он позволяет слушать музыку при выключенном компьютере, исполняя роль музыкального центра. Также он может пригодиться владельцам ноутбуков, не имеющим возможность их модернизировать.

  • DVD-rom – используется для чтения всех CD и практически всех DVD-дисков (некоторые модели могут испытывать проблемы с DVD-ram);

  • • DVD-ROM/CD-RW – так называемый комбинированный привод (combo). Используется для чтения/записи дисков CD-R/CD-RW (CD-ROM можно читать) и только для чтения почти всех DVD-дисков. Имеется в продаже, стоит чуть дешевле, чем DVD-rw, поэтому покупать его нет смысла. Но такие комбинированные приводы иногда устанавливаются в некоторых дешевых компьютерах, например в бюджетных моделях ноутбуков и в самых доступных компьютерах от Apple – Mac Mini. Так что при выборе ноутбука и Mac Mini внимательно читайте спецификацию, чтобы не купить компьютер с combo-приводом;

  • • DVD-RW – используется для чтения/записи почти всех форматов CD/DVD (понятно, что нельзя записать форматы CD-ROM, DVD-ROM и DVD-RAM).



Правила ухода; как продлить срок эксплуатации дисковода?

Гарантийный срок эксплуатации дисководов составляет в среднем два года, однако, чтобы ваш CD-ROM служил как можно дольше, нужно придерживаться нескольких правил:

  • Использовать в работе только качественные диски без повреждений – самая маленькая трещинка во внутренней части диска может привести к тому, что из-за высокой скорости вращения диск разлетится на осколки и неотвратимо повредит CD-ROM.

  • Не стоит использовать загрязненные диски и диски с наклейками.

  • Выключая компьютер, не стоит оставлять диск в CD-ROM’е – при включении компьютера диск может повредиться.





Доклады: Материнские платы ASUS P5B, ASUS P5Q, флопик.


    1. Процессор. Основы охлаждения

Процессор - это одна из главных частей компьютера, основными задачами которой являются производить вычисления и выполнять команды полученные от программ. На сегодняшний момент существуют два главных монстра по производству процессоров это компании Intel и Amd. Для того чтобы ответить на вопрос как выбрать процессор? необходимо знать все его характеристики. Также важно определить для каких целей будет использоваться процессор. К примеру, если вы хотите собрать игровой компьютер то выбирать процессор надо как можно мощней по всем параметрам, а если вы хотите собрать компьютер для офиса то мощный процессор тут ни к чему, достаточно будет одноядерного процессора с частотой около 2 ГГц. 

Характеристики процессора:

  • Тактовая частота - тактом называется одна операция. Единицей измерения является ГГц(гигагерц) 2,21 ГГц означает что процессор за одну секунду может выполнить 2 миллиарда 216 миллионов операций. Следовательно чем выше у процессора тактовая частота тем он быстрей обрабатывает данные. Этот параметр является одним из важных, на него следует обратить внимание когда Вы будете выбирать процессор.

  • Количество ядер: Этот параметр в настоящее время приобретает все большую популярность. Увеличение таковой частоты пока что достигло пределов и в связи с этим развитие пошло в сторону параллельных вычислений и увеличения ядер в процессорах. Грубо говоря, количество ядер показывает сколько программ могут быть запушены одновременно, практически без потери быстродействия. Но если программа оптимизирована под 2 ядра, а у вас 3 или больше ядер, вы хоть с бубном вокруг компьютера пляшите она не будет полноценно использовать все ядра. Сейчас большинство программ используют одно два ядра поэтому значительного прироста производительности на четырех ядерном процессоре вы не увидете. Но если вы хотите собрать компьютер для самых последних игр и обработки видео, то вибирать процессор следует с большим количеством ядер.

  • Частота шины процессора - показывает с какой скоростью происходит передача информации в процессор и из него. Следовательно чем больше, тем быстрее. Единицы измерения такие же как у тактовой частоты ГГц(гигагерц).

  • Кэш процессора - это блок высокоскоростной памяти, расположенный прямо на ядре процессора. Кеш существенно повышает производительность за счет того что скорость обработки данных из кеша быстрее чем из оперативной памяти. Существуют несколько уровней кеш памяти, а именно 3 уровня. 

  • Кеш первого уровня (L1), он самый маленький по объему, но самый быстрый. Его размер может быть в пределах от 8 до 128 Кб.

  • Кеш вторго уровня (L2), он медленнее первого, но больше по объему. Его размер может быть в пределах от 128 до 12288 Кб.

  • Кеш третьего уровня (L3), еще медленнее, но гораздо больше второго. Его вообще может не быть. Как правило, кэш-памятью третьего уровня комплектуются только CPU для серверных решений или специальные редакции "настольных" процессоров. Кэш-памятью третьего уровня обладают, например, такие линейки процессоров, как Intel Pentium 4 Extreme Edition, Xeon DP, Itanium 2, Xeon MP, i7 и прочие. Его размер может быть в пределах от 0 до 16384 Кб. Этот параметр является одним из важных, на него следует обратить внимание когда Вы будете выбирать процессор.

  • Сокет (Socket) - это разъем для установки процессора на материнской плате. Например если в маркировки процессора указан сокет AM3, то материнская плата нужна с сокетом AM3.

  • Тепловыделение процессора - показывает на сколько сильно греется процессор при работе и какую систему охлаждения следует использовать. Измеряется в ватах. Может быть в пределах от 10 до 165 Вт.

  • Поддержка различных технологий - это набор дополнительных команд которые предназначены улучшить производительность. Например технология SSE4.
    SSE4 - технология, представляющая собой набор из 54 новых команд. Они призваны увеличить производительность процессора в работе с медиаконтентом, в игровых приложениях, задачах трехмерного моделирования.

  • Технический процесс - это масштаб технологии, которая определяет размеры полупроводниковых элементов, составляющих основу внутренних цепей процессора (эти цепи состоят из соединенных соответствующим образом между собой транзисторов). Совершенствование технологии и пропорциональное уменьшение размеров транзисторов способствуют улучшению характеристик процессоров. Для сравнения, у ядра Willamette, выполненного по техпроцессу 0.18 мкм - 42 миллиона транзисторов, а у ядра Prescott, техпроцесс 0.09 мкм - 125 миллионов. Этот параметр обычно не указывется в прайс листах.

К основным характеристикам процессора относятся:

  • Быстродействие (вычислительная мощность) – это среднее число операций процессора в секунду.

  • Тактовая частота в МГц. Тактовая равна количеству тактов в секунду. Такт - это промежуток времени между началом подачи текущего импульса ГТЧ и началом подачи следующего. Характерные тактовые частоты микропроцессоров: 40 МГц, 66 МГц, 100 МГц, 130 МГц, 166 МГц, 200 МГц, 333 МГц, 400 МГц, 600 МГц, 800 МГц, 1000 МГц и т. д. До 3ГГц Тактовая частота отражает уровень промышленной технологии, по которой изготавливался данный процессор. Она также характеризирует и компьютер, поэтому по названию модели микропроцессора можно составить достаточно полное представление о том, к какому классу принадлежит компьютер. Поэтому часто компьютерам дают имена микропроцессоров, входящих в их состав. Ниже приведены названия наиболее массовых процессоров, выпущенных фирмой Intel и годы их создания: 8080 (1974 г.), 80286 (1982 г.), 80386DX (1985 г.), 80486DX (1989 г.), 80586 или Pentium (1993 г.), Pentium Pro (1995 г.), Pentium II (1997 г.), Pentium III (1999 г.), Pentium IV (2001 г.). Как видно, увеличение частоты – одна из основных тенденций развития микропроцессоров. На рынке массовых компьютеров лидирующее место среди производителей процессоров занимают 2 фирмы: Intel и AMD. За ними закрепилось базовое название, переходящее от модели к модели. У Intel – это Pentium и модель с урезанной кэш-памятью Pentium Celeron; у AMD – это Athlon и модель с урезанной кэш-памятью Duron.

  • Разрядность процессора - это максимальное количество бит информации, которые могут обрабатываться и передаваться процессором одновременно. Разрядность процессора определяется разрядностью регистров, в которые помещаются обрабатываемые данные. Например, если регистр имеет разрядность 2 байта, то разрядность процессора равна 16 (2x8); если 4 байта, то 32; если 8 байтов, то 64.

Для пользователей процессор интересен прежде всего своей системой команд и скоростью их выполнения. Система команд процессора представляет собой набор отдельных операций, которые может выполнить процессор данного типа. Разные модели микропроцессоров выполняют одни и те же операции за разное число тактов. Чем выше модель микропроцессора, тем, как правило, меньше тактов требуется для выполнения одних и тех же операций.

Краткое содержание статьи: В конце 2001 года мы провели эксперимент, снимая кулеры с рабочих процессоров. Тогда AMD показала себя не в лучшем свете, поскольку оба процессора компании сгорели, уведя в мир иной и материнскую плату. Мы решили повторить подобный эксперимент в 2007 году, отключая вентилятор на кулерах современных процессоров. А вы не задумывались, что будет, если вентилятор кулера вашего компьютера выйдет из строя? А вас не будет дома? Не приведёт ли это к пожару? Основы охлаждения процессора

Важно знать несколько основных принципов охлаждения процессора. Со всеми настольными процессорами, доступными сегодня, весьма легко работать, поскольку ядро процессора непосредственно защищено большой металлической пластиной, закрывающей всю верхнюю часть процессора. Эта металлическая пластина называется распределителем тепла (heat spreader), так как она увеличивает площадь, с которой процессор отдаёт тепло на радиатор. Она также защищает ядро процессора от физических повреждений или сколов, которые могут случиться, если вы будете неаккуратно устанавливать радиатор.

Тепловыделение процессора зависит от его архитектуры: Core 2 намного более эффективен по энергопотреблению, чем старые Pentium 4 или Pentium D. Число процессорных ядер тоже важный фактор, поскольку двуядерные процессоры всегда требуют больше энергии. Важна и тактовая частота, на которой процессор работает. Чем выше тактовая частота, тем больше должно быть напряжение, что тоже приводит к увеличению энергопотребления. Требования к питанию экспоненциально возрастают при повышении любого из параметров.

Классические воздушные кулеры CPU различаются по размерам, конструкции, материалу, типу и размерам вентилятора. Размер радиатора, конструкция и материал связаны друг с другом, и все они решают одну проблему: отведение как можно большего количества тепла от горячих участков процессора на металлическую поверхность, которая должна быть максимально большой по площади. Именно поэтому эффективные радиаторы используют большое количество рёбер, при возможности медных: металл нагревается, тепло передаётся воздушному потоку, создаваемому вентилятором, который отводит горячий воздух от кулера. Медь гораздо тяжелее алюминия, поэтому создавать полностью медные радиаторы не так просто.

Процессоры часто продаются в комплекте с кулером (радиатор плюс вентилятор). Современные кулеры эффективные и тихие, их будет вполне достаточно, если вы не планируете разгонять процессор. Впрочем, если вам требуется более производительный кулер, то придётся покупать его отдельно.

С кулерами процессоров может появиться несколько "подводных камней". Первый касается установки: не забывайте использовать термопасту или термопрокладку. Используйте как можно меньше термопасты, раскатывая её очень тонким слоем, поскольку её роль заключается только в создании контакта между распределителем тепла CPU и радиатором. Если термопаста вытекает по краям, и вам приходится её убирать, то вы нанесли слишком толстый слой.

Когда вы будете устанавливать радиатор, будьте внимательны. Поверхность должна прилегать к распределителю тепла равномерно. Если вы используете мощный кулер, купленный отдельно, то он, вероятно, имеет эффективную конструкцию и обеспечивает достаточный теплоотвод для большинства настольных ПК. Но если процессор выполняет "тяжёлые" задачи, то без хорошего вентилятора не обойтись. И здесь мы получаем ещё один потенциально уязвимый фактор: каждый вентилятор - это механическое устройство с ограниченным сроком жизни. Когда вентилятор выйдет из строя, кулер может уже не справляться с высоким тепловыделением процессора.

Основные виды систем охлаждения:

1. Система на основе жидкого азота.
Стоит сразу сказать, что этот способ самый дорогой и труднодоступный. Но в то же время – это самый действенный и результативный способ. Он заключается в том, чтобы к процессору как можно ближе преподнести и разместить некую емкость с жидким азотом. Жидкий азот имеет температуру -196 С0, что, собственно, и дает данному способу огромное преимущество. Но имеются и минусы: труднодоступность самого азота и после длительного использования азота в качестве охладителя материалы материнской платы, да и сам «камень» могут выйти из строя из-за порчи.

2. Система на основе водяного охлаждения.
Чуть более сложная система в отличии от вышеупомянутого азота. В общем виде она в какой-то мере напоминает систему охлаждения двигателя автомобиля. Стоит начать с того, что нужен абсолютно герметичный теплоотвод, и, желательно, дистилированную воду (дабы в случае прорыва теплоотвода не возникал риск замыкания и прочих неприятностей). Миниатюрный водяной насос вам понадобится для «прогона» воды по всей системе. Также вне корпуса вашего системного блока нужно установить теплообменник (куда будет поступать нагревшаяся вода, и откуда будет «уходить» холодная) и кулер (желательно помощнее), который и будет охлаждать нагревшуюся воду.

3. Система охлаждения на основе фреона.
Также довольно дорогая система охлаждения. Своим строением напоминает систему водяного охлаждения. Отличается лишь более высоким качеством насоса и теплообменника. Ну и, разумеется, своей ценой.

4. Воздушная система охлаждения.
Это, как многие уже догадались, обычный кулер. Но многие путают кулер и вентилятор, находящийся на процессоре. Кулер – это и вентилятор и теплообменник (холодильник). А это немаловажно. В современном рынке компьютерной техники существует великое множество аэрогенных систем охлаждения, так что тут ничего особо сложного нет. Сколько денег в кармане – такой и кулер.



    1. Видеокарта, адаптеры

Видеокарта - это одна из главных частей компьютера, основной задачей, которой является преобразование изображения, находящегося в памяти компьютера, в видеосигнал для монитора. На сегодняшний момент существуют два главных монстра по производству видеокарт это компании Nvidia и AMD (ATi). 
Современные видеокарты не ограничиваются простым выводом изображения, они имеют встроенный графический микропроцессор, который может производить дополнительную обработку, разгружая от этих задач центральный процессор компьютера. Например, все современные видеокарты Nvidia и AMD (ATi) поддерживают приложения OpenGL на аппаратном уровне. В последнее время также имеет место тенденция использовать вычислительные способности графического процессора для решения неграфических задач. 

Характеристики видеокарт: Какую фирму выбрать: Существуют компании которые собирают видеокарты Nvidia и AMD (ATi) добавляя что то свое. На мой взгляд, лидирующие позиции занимают Msi(Microstar) и Asus видеокарты этих производителей более надежны, имеют хорошие характеристики и цену, поэтому я советую выбирать видеокарты этих производителей. И еще отдельного внимания заслуживают видеокарты Palit, я вам не советую выбирать эти видеокарты именно с ними у меня возникали неприятности. Если выбирать конкретно между GeForce или Radeon то я всегда выбираю GeForce они дороже, но с ними у меня проблем не было. Были случаи с Radeon, когда стоял антивирус Dr.web игры запускались, но дальше приветствия ничего не было. Ширина шины памяти - это количество бит информации, передаваемой за такт. Важный параметр в производительности карты. Измеряется в битах. Объём видеопамяти - объём собственной оперативной памяти видеокарты. Выполняет роль кадрового буфера, в котором хранится изображение, генерируемое и постоянно изменяемое графическим процессором и выводимое на экран монитора (или нескольких мониторов). В видеопамяти хранятся также промежуточные невидимые на экране элементы изображения и другие данные. Видеопамять бывает нескольких типов, различающихся по скорости доступа и рабочей частоте. Современные видеокарты комплектуются памятью типа DDR, DDR2, GDDR3, GDDR4 и GDDR5. Следует также иметь в виду, что помимо видеопамяти, находящейся на видеокарте, современные графические процессоры обычно используют в своей работе часть общей системной памяти компьютера, прямой доступ к которой организуется драйвером видеоадаптера через шину AGP или PCIE. На этот параметр стоит обратить внимание когда Вы будете выбирать видеокарту. Для игр и работой с графикой следует выбирать с 1024 mb и выше. Для офиса 512 вполне хватит.

Частоты ядра и памяти - измеряются в мегагерцах, чем больше, тем быстрее видеокарта будет обрабатывать информацию. В прайс листах, как правило не указывается.

Разрешающая способность - размер картинки выводимой на монитор. Если у вас большой экран, то вам нужна видеокарта поддерживающая большое разрешение. В принципе современные видеокарты поддерживают разрешение до 1920x1080 этого вполне хватает.

Выводы карты: Самые распространеные это HDMI,VGA, DVI на картинке слева они показанны в том же порядке.
HDMI - интерфейс для мультимедии высокой чёткости, позволяющий передавать цифровые видеоданные высокого разрешения и многоканальные цифровые аудиосигналы с защитой от копирования.
DVI (англ. цифровой видеоинтерфейс) — стандарт на интерфейс и соответствующий разъём, предназначенный для передачи видеоизображения на цифровые устройства отображения, такие как жидкокристаллические мониторы и проекторы.
VGA — аналоговые и изначально были предназначены для мониторов на электронно-лучевых трубках (ЭЛТ). Они передают сигнал построчно, при этом изменение напряжения означает изменение яркости. Для устройств на ЭЛТ это было нужно для изменения интенсивности луча электронов.

Видеоадаптер - это плата расширения, которая необходима для вывода информации на экран. Видеоадаптер и монитор образуют видеосистему компьютера.

Главные элементы видеоадаптера - видеопроцессор и видеопамять. Эти устройства необходимы видеоадаптеру для обработки и временного хранения данных об изображении, которое выводиться на экран монитора. Чем больше объем видеопамяти, тем производительней видеосистема компьютера. Однако для видеоадаптера имеет значение те только объем памяти, но и её скорость.

Разрешение, глубина цвета и частота регенерации экрана является не менее важными параметрами видеосистемы компьютера, чем объем видеопамяти.

Разрешение экрана определяется, какое количество точек в строке по горизонтали и строк по вертикали на нем отображается. Чем разрешение выше, тем масштабнее видимая область, тем больше сведений выводиться монитором. Но одновременно с этим размеры элементов изображения заметно уменьшаются, поэтому разглядеть мелкие детали становится труднее. Слишком низкое разрешение, напротив, приводит к тому, что элементы изображения делаются чрезмерно крупными, и им начинает не хватать места. Кроме того, если задать разрешение, выходящего за пределы оптимального для конкретной модели монитора диапазона, то рабочая область может вообще перестать уменьшаться на экране, и чтобы увидеть отдельные её части, придется перемещать точку обзора в разные стороны с помощью курсора мыши.

С учетом этих особенностей приняты оптимальные для миноров каждого размера разрешения экрана, поддерживаемые видеоадаптером.

Глубина цвета характеризует количество передаваемых монитором оттенков. Современные программы - в первую очередь редакторы графики и видео, игры, мультимедийные - представляют весьма высокие требования к этому показателю. Однако на цветную палитру свои ограничения налагает видеопамять. Поэтому при малом её объеме на неновых малопроизводительных ПК лучше установить разрешения в 256 цветов. В противном случае компьютер будет работать очень медленно. Впрочем, на современных компьютерах для решения большинства повседневных задач, как правило, оказывается вполне достаточным цветовой режим High Color. Глубина цвета True Color обеспечивает наиболее комфортную для глаз работу, но для него требуется мощная, например 32 Мбайт, видеопамяти.

Помимо этого, количество передаваемых монитором оттенков определяется установленным разрешением экрана.

Частота регенерации экрана, или частота развертки, измеряется в герцах и показывает, сколько раз за секунду перерисовывается экран. Если она низкая, изображение мерцает, что негативно сказывается на зрении. Сейчас стандартом считается частота регенерации не ниже 85 гц. Помимо адаптера эту частоту должен поддерживать и монитор.

Таким образом, производительность конкретного адаптера, зависит от выбранного разрешения, количества цветов и частоты развертки.

В состав современных видео адаптеров входят 2D- и 3D-ускорители - специальные платы, ускоряющие обработку трехмерной и двухмерной графики. Они нужны потому, что просчет графических изображений, требует очень больших системных ресурсов, и процессор самостоятельно с этой задачей не справляется.

Звуковая плата.

Звуковая плата - это плата расширения, с помощью которой ПК обрабатывает звук. К её выходу подключают колонки, через которые осуществляется вывод аудиоинформации. Особый размер позволяет передать звуковой сигнал на внешний усилитель. Кроме того, имеется вход для микрофона, и другие разъемы.

Современные операционные системы и большинство приложений посредством звуковых сигналов оповещают пользователя о своем состоянии. В обучающих программах, значительная доля сведений передается через устную речь лектора. Не менее требовательны к звуковым способностям ПК игры. Важнейшие характеристики звуковой платы - разрядность, максимальная частота дискретизации, АЦП и ЦАП, количество поддерживаемых звуковых каналов.

Разрядность определяет число битов, использованных при двоичном кодировании аналогового сигнала и обратном преобразовании. Чем оно больше, тем реалистичнее выводимый компьютером звук. В настоящее время широко применяются 32- и 64- разрядные платы.

Качество звучание также находиться в прямой зависимости от максимальной частоты дискретизации, используемой АЦП и ЦАП платы.

Поскольку компьютер сегодня все чаще применяется как музыкальный центр и домашний кинотеатр. Кроме того, последние модели этих устройств обеспечивают многоканальный звук в стандарте Dolby Digital.

Однако следует учитывать, что параметры звучания зависит от характеристики не только платы, но и колонок. В стандартной комплектации ПК проставляются с маломощными колонками, не дающие высокого качества звука, поэтому подбирать их приходиться специально с учетом запросов пользователя.

Раздел 5. Организация системы памяти и принципы ее работы

5.1 Общие сведения и классификация устройств памяти

Памятью ЭВМ называется совокупность устройств, служащих для запоминания, хранения и выдачи информации. Отдельные устройства, входящие в эту совокупность, называют запоминающими устройствами или памятями того или иного типа.

Производительность и вычислительные возможности ЭВМ в значительной степени определяются составом и характеристиками ее ЗУ. В составе ЭВМ используется одновременно несколько типов ЗУ, отличающихся принципом действия, характеристиками и назначением.

Основными операциями в памяти являются занесение информации в память — запись и выборка информации из памяти — считывание. Обе эти операции называются обращением к памяти.

При обращении к памяти производится считывание или запись некоторой единицы данных — различной для устройств разного типа. Такой единицей может быть, например, байт, машинное слово или блок данных.

Важнейшими характеристиками отдельных устройств памяти (запоминающих устройств) являются емкость памяти, удельная емкость, быстродействие.

Емкость памяти определяется максимальным количеством данных, которые могут в ней храниться.

Удельная емкость есть отношение емкости ЗУ к его физическому объему.

Плотность записи есть отношение емкости ЗУ к площади носителя. Например, у HDD емкостью до 10 Гб плотность записи составляет 2 Гбит на кв. дюйм.

Быстродействие памяти определяется продолжительностью операции обращения, т. е. временем, затрачиваемым на поиск нужной единицы информации в памяти и на ее считывание (время обращения при считывании), или временем на поиск места в памяти, предназначаемого для хранения данной единицы информации, и на ее запись в память (время обращения при записи).

Памятью компьютера называется совокупность устройств для хранения программ, вводимой информации, промежуточных результатов и выходных данных. Классификация памяти представлен на рисунке:

5.2 Внутренняя память

Основная или оперативная память используется для кратковременного хранения обрабатываемых данных и программ, используемых для этой обработки. Этот вид памяти не используется для долговременного хранения программ и данных. Другими словами, данные, которые требуется обработать, должны находиться в основной памяти, вместе с необходимыми программами.

Физические принципы, на которых основана эта память, приводят к тому, что способность памяти хранить информацию зависит от наличия электропитания.

При отключении питания вся находившаяся в памяти информация исчезает. Это необходимо понимать пользователю, чтобы в процессе работы не потерять важную информацию.

Основная память организована как последовательность байтов. Каждый байт имеет свой адрес в виде целого числа. Вся память разбивается на отдельные области, в которых находятся обрабатываемые данные и программы обработки.

Основная характеристика памяти - это ее объем или емкость, т.е. общее число доступных байтов. Современные компьютеры имеют объем основной памяти, измеряемый миллионами байтов. Для удобства введены более крупные единицы измерения объемов памяти:

1 Килобайт (Кб) = 1024 байт (т.е. 2 в степени 10)

1 Мегабайт (Мб) = 1024 Кб ( чуть больше миллиона байт )

1 Гигабайт (Гб) = 1024 Мб ( чуть больше миллиарда байт )

Современные программы требуют все большего объема памяти, поэтому трудно дать неизменную оценку достаточного уровня основной памяти. Можно лишь сказать, что в конце 1999 года хороший массовый ПК должен иметь как минимум 16 Мб памяти, лучше - 32 Мб.

Конструктивно основная память выполнена в виде отдельных микросхем площадью в несколько квадратных сантиметров. Все такие микросхемы собраны на отдельной плате и легко могут быть заменены на более емкие.

Внутренняя память предназначена для хранения относительно небольших объемов информации при ее обработке микропроцессором.

Энергозависимой называется память, которая стирается при выключении компьютера.

Энергонезависимой называется память, которая не стирается при выключении компьютера.

К энергонезависимой внутренней памяти относится постоянное запоминающее устройство (ПЗУ). Содержимое ПЗУ устанавливается на заводе-изготовителе и в дальнейшем не меняется. Эта память составлена из микросхем, как правило, небольшого объема. Обычно в ПЗУ записываются программы, обеспечивающие минимальный базовый набор функций управления устройствами компьютера. При включении компьютера первоначально управление передается программе из ПЗУ, которая тестирует компоненты компьютера и запускает программу-загрузчик операционной системы.

К энергозависимой внутренней памяти относятся оперативное запоминающее устройство (ОЗУ), видеопамять и кэш-память. В оперативном запоминающем устройстве в двоичном виде запоминается обрабатываемая информация, программа ее обработки, промежуточные данные и результаты работы. ОЗУ обеспечивает режимы записи, считывания и хранения информации, причём в любой момент времени возможен доступ к любой произвольно выбранной ячейке памяти. Это отражено в англоязычном названии ОЗУ – RAM (Random Access Memory – память с произвольным доступом). Доступ к этой информации в ОЗУ осуществляется очень быстро. Эта память составлена из сложных электронных микросхем и расположена внутри корпуса компьютера. Часть оперативной памяти отводится для хранения изображений, получаемых на экране монитора, и называетсявидеопамять. Чем больше видеопамять, тем более сложные и качественные картинки может выводить компьютер. Высокоскоростная кэш-память служит для увеличения скорости выполнения операций компьютером и используется при обмене данными между микропроцессором и RAM. Кэш-память является промежуточным запоминающим устройством (буфером). Существует два вида кэш-памяти: внутренняя, размещаемая внутри процессора и внешняя, размещаемая на материнской плате.

5.3 Внешняя память

Внешняя память предназначена для длительного хранения больших объемов информации независимо от того включен или выключен компьютер.

В отличие от основной памяти, внешняя память предназначена для долговременного хранения и только хранения информации. Способность этой памяти хранить информацию не зависит от наличия питания. Вся хранимая во внешней памяти информация разбивается на так называемые файлы. Другими словами, файл - это единица хранения информации во внешней памяти. Независимо от типа файла, все они в конечном счете содержат только наборы нулей и единиц, которые объединены в байты. Отсюда следует, что основной характеристикой файла является его размер в байтах. Этот размер может изменяться в очень широких пределах - от нескольких байт до нескольких мегабайт. Для сравнения, стандартная страница печатного текста занимает около 2 Кб, а солидная книга в 500 страниц потребует для своего хранения файла объемом в 1 Мб.

Внешняя память может быть с произвольным доступом и последовательным доступом.

Устройства памяти с произвольным доступом позволяют получить доступ к произвольному блоку данных примерно за одно и то же время доступа.

Выделяют следующие основные типы устройств памяти с произвольным доступом:

1. Накопители на жёстких магнитных дисках (винчестерыНЖМД) - несъемные жесткие магнитные диски. Ёмкость современных винчестеров от сотен мегабайт до нескольких сотен гигабайт. На современных компьютерах это основной вид внешней памяти. Первые жесткие диски состояли из 2 дисков по 30 Мбайт и обозначались 30/30, что совпадало с маркировкой модели охотничьего ружья “Винчестер” - отсюда пошло такое название этих накопителей.

2. Накопители на гибких магнитных дисках (флоппи-дисководы, НГМД) – устройства для записи и считывания информации с небольших съемных магнитных дисков (дискет), упакованные в пластиковый конверт (гибкий - у 5,25 дюймовых дискет и жесткий у 3,5 дюймовых). Максимальная ёмкость 5,25 дюймовой дискеты - 1,2Мбайт; 3,5 дюймовой дискеты - 1,44Мбайт. В настоящее время 5,25 дюймовые дискеты морально устарели и не используются.

3. Оптические диски (СD-ROM Compact Disk Read Only Memory) - компьютерные устройства для чтения с компакт-дисков. CD-ROM диски получили распространение вслед за аудио-компакт дисками. Это пластиковые диски с напылением тонкого слоя светоотражающего материала, на поверхности которых информация записана с помощью лазерного луча. Лазерные диски являются наиболее популярными съемными носителями информации. При размерах 12 см в диаметре их ёмкость достигает 700 Мб. В настоящее время все более популярным становится формат компакт-дисков DVD-ROM, позволяющий при тех же размерах носителя разместить информацию объемом 4,3 Гб. Кроме того, доступными массовому покупателю стали устройства записи на компакт диски. Данная технология получила название CD-RW и DVD-RW соответственно.

Устройства памяти с последовательным доступом позволяют осуществлять доступ к данным последовательно, т.е. для того, чтобы считать нужный блок памяти, необходимо считать все предшествующие блоки. Среди устройств памяти с последовательным доступом выделяют:

1. Накопители на магнитных лентах (НМЛ) – устройства считывания данных с магнитной ленты. Такие накопители достаточно медленные, хотя и большой ёмкости. Современные устройства для работы с магнитными лентами – стримеры – имеют увеличенную скорость записи 4 - 5Мбайт в сек. Существуют также, устройства позволяющие записывать цифровую информацию на видеокассеты, что позволяет хранить на 1 кассете 2 Гбайта информации. Магнитные ленты обычно используются для создания архивов данных для долговременного хранения информации.

2. Перфокарты – карточки из плотной бумаги и перфоленты – катушки с бумажной лентой, на которых информация кодируется путем пробивания (перфорирования) отверстий. Для считывания данных применяются устройства последовательного доступа. В настоящее время данные устройства морально устарели и не применяются.

Различные виды памяти имеют свои достоинства и недостатки. Так, внутренняя память имеет хорошее быстродействие, но ограниченный объем. Внешняя память, наоборот, имеет низкое быстродействие, но неограниченный объем. Производителям и пользователям компьютеров приходится искать компромисс между объемом памяти, скоростью доступа и ценой компьютера, так комбинируя разные виды памяти, чтобы компьютер работал оптимально. В любом случае, объем оперативной памяти является основной характеристикой ЭВМ и определяет производительность компьютера.

Кратко рассмотрим принцип работы оперативной памяти. Минимальный элемент памяти - бит или разряд способен хранить минимально возможный объем информации - одну двоичную цифру. Бит очень маленькая информационная единица, поэтому биты в памяти объединяются в байты - восьмерки битов, являющиеся ячейками памяти. Все ячейки памяти пронумерованы. Номер ячейки называют ее адресом. Зная адрес ячейки можно совершать две основные операции:

1) прочитать информацию из ячейки с определенным адресом;

2) записать информацию в байт с определенным адресом.

Чтобы выполнить одну из этих операций необходимо, чтобы от процессора к памяти поступил адрес ячейки, и чтобы байт информации был передан от процессора к памяти при записи, или от памяти к процессору при чтении. Все сигналы должны передаваться по проводникам, которые объединены в шины.

По шине адреса передается адрес ячейки памяти, по шине данных – передаваемая информация. Как правило, эти процессы проходят одновременно.

Для работы ОЗУ используются еще 3 сигнала и соответственно 3 проводника. Первый сигнал называется запрос чтения, его получение означает указание памяти прочесть байт. Второй сигнал называется запрос записи, его получение означает указание памяти записать байт. Передача сразу обоих сигналов запрещена. Третий сигнал – сигнал готовности, используемый для того, чтобы память могла сообщить процессору, что она выполнила запрос и готова к приему следующего запроса.

Раздел 6. Программное обеспечение

6.1 Прикладное программное обеспечение

Программное обеспечение (ПО) - это совокупность всех программ и соответствующей документации, обеспечивающая использование ЭВМ в интересах каждого ее пользователя.

Различают системное и прикладное ПО. Схематически программное обеспечение можно представить так:

Системное ПО – это совокупность программ для обеспечения работы компьютера. Системное ПО подразделяется на базовое и сервисное. Системные программы предназначены для управления работой вычислительной системы, выполняют различные вспомогательные функции (копирования, выдачи справок, тестирования, форматирования и т. д).

Базовое ПО включает в себя:

  • операционные системы;

  • оболочки;

  • сетевые операционные системы.

Сервисное ПО включает в себя программы (утилиты):

  • диагностики;

  • антивирусные;

  • обслуживания носителей;

  • архивирования;

  • обслуживания сети.

Прикладное ПО – это комплекс программ для решения задач определённого класса конкретной предметной области. Прикладное ПО работает только при наличии системного ПО.

Прикладные программы называют приложениями. Они включает в себя:

  • текстовые процессоры;

  • табличные процессоры;

  • базы данных;

  • интегрированные пакеты;

  • системы иллюстративной и деловой графики (графические процессоры);

  • экспертные системы;

  • обучающие программы;

  • программы математических расчетов, моделирования и анализа;

  • игры;

  • коммуникационные программы.

Особую группу составляют системы программирования (инструментальные системы), которые являются частью системного ПО, но носят прикладной характер. Системы программирования – это совокупность программ для разработки, отладки и внедрения новых программных продуктов. Системы программирования обычно содержат:

  • трансляторы;

  • среду разработки программ;

  • библиотеки справочных программ (функций, процедур);

  • отладчики;

  • редакторы связей и др.

6.2 Операционная система

Операционная система – это комплекс программ, обеспечивающих управление работой компьютера и его взаимодействие с пользователем.

С точки зрения человека операционная система служит посредником между человеком, электронными компонентами компьютера и прикладными программами. Она позволяет человеку запускать программы, передавать им и получать от них всевозможные данные, управлять работой программ, изменять параметры компьютера и подсоединённых к нему устройств, перераспределять ресурсы. Работа на компьютере фактически является работой с его операционной системой. При установке на компьютер только операционной системы (ОС) ничего содержательного на компьютере также сделать не удастся. Для ввода и оформления текстов, рисования графиков, расчёта зарплаты или прослушивания лазерного диска нужны специальные прикладные программы. Но и без ОС ни одну прикладную программу запустить невозможно.

Операционная система решает задачи, которые можно условно разделить на две категории:

  • во-первых, управление всеми ресурсами компьютера;

  • во-вторых, обмен данными между устройствами компьютера, между компьютером и человеком.

Кроме того, именно ОС обеспечивает возможность индивидуальной настройки компьютера: ОС определяет, из каких компонентов собран компьютер, на котором она установлена, и настраивает сама себя для работы именно с этими компонентами.

Ещё не так давно работы по настройке приходилось выполнять пользователю вручную, а сегодня производители компонентов компьютерной техники разработали протокол plug-and-play (включил - заработало). Этот протокол позволяет операционной системе в момент подключения нового компонента получить информацию о новом устройстве, достаточную для настройки ОС на работу с ним.

Операционные системы для ПК различаются по нескольким параметрам. В частности, ОС бывают:

  • однозадачные и многозадачные;

  • однопользовательские и многопользовательские;

  • сетевые и несетевые.

Кроме того, операционная система может иметь командный или графический многооконный интерфейс (или оба сразу).

Однозадачные операционные системы позволяют в каждый момент времени решать только одну задачу. Такие системы обычно позволяют запустить одну программу в основном режиме.

Многозадачные системы позволяют запустить одновременно несколько программ, которые будут работать параллельно.

Главным отличием многопользовательских систем от однопользовательских является наличие средств защиты информации каждого пользователя от несанкционированного доступа других пользователей. Следует заметить, что не всякая многозадачная система является многопользовательской, и не всякая однопользовательская ОС является однозадачной.

В последние годы фактическим стандартом стал графический многооконный интерфейс, где требуемые действия и описания объектов не вводятся в виде текста, а выбираются из меню, списков файлов и т.д.

В настоящее время, с появлением мощных компьютеров, широкое распространение получили два типа ОС. К первому типу относятся достаточно похожие ОС семейства Windows компании Microsoft. Они многозадачные и имеют многооконный графический интерфейс. На рынке персональных компьютеров с Windows конкурируют ОС типа UNIX. Это многозадачная многопользовательская ОС с командным интерфейсом. В настоящее время разработаны расширения UNIX, обеспечивающие многооконный графический интерфейс. UNIX развивалась в течение многих лет разными компаниями, но до недавнего времени она не использовалась на персональных компьютерах, т.к. требует очень мощного процессора, весьма дорога и сложна, её установка и эксплуатация требуют высокой квалификации. В последние годы ситуация изменилась. Компьютеры стали достаточно мощными, появилась некоммерческая, бесплатная версия системы UNIX для персональных компьютеров - система Linux. По мере роста популярности этой системы в ней появились дополнительные компоненты, облегчающие её установку и эксплуатацию. Немалую роль в росте популярности Linux сыграла мировая компьютерная сеть Internet. Хотя освоение Linux гораздо сложнее освоения систем типа Windows, Linux - более гибкая и в то же время бесплатная система, что и привлекает к ней многих пользователей.

Существуют и другие ОС. Известная компания Apple производит компьютеры Macintosh с современной ОС MacOS. Эти компьютеры используются преимущественно издателями и художниками. Фирма IBM производит ОС OS/2. Операционная система OS/2 такого же класса надёжности и защиты, как и Windows NT.

Контрольные вопросы:

1.Что включает в себя понятие "программное обеспечение"?

2. Назовите и характеризуйте основные категории программного обеспечения.

3. В чем отличие прикладных программ от системных и инструментальных?

4. Что входит в системное программное обеспечение?

5. Что называется утилитой?

6. Для чего предназначены драйвера?

7. Какое назначение текстового редактора?

8. Для какой цели применяют графические редакторы?

9. В чем состоит назначение операционной системы?

10. Характеризуйте основные классы операционных систем.

11. Опишите процесс начальной загрузки операционной системы в оперативную память компьютера.

12. Назовите основные разновидности программ-утилит и дайте им краткую характеристику.

13. Какой вид интерфейса удобнее для пользователя - командный или графический?

14. Охарактеризуйте основные особенности операционных систем семейства Windows.

15. Назовите функциональные возможности табличного процессора.

16. Дайте определения интегрированного пакета программ.

17. Каково назначение сетевого программного обеспечения?

18. Сколько версий операционной системы Windows Вы знаете?


6.3 BIOS. Назначение, функции

BIOS (Basic Input/Output System — базовая система ввода/вывода) это программа, предназначенная для первоначального запуска компьютера, настройки обору­дования и обеспечения функций ввода/вывода. BIOS записывается в микросхему flash-памяти, которая расположена па системной плате.

 

Изначально назначением BIOS было обслуживание устройств ввода/вывода (кла­виатуры, монитораи дисковых накопителей), поэтому ее и назвали «базовая система ввода/вывода». В современных компьютерах BIOS выполняет несколько функций.

Назначение и функции Bios.

Bios записывается в микросхему flash - памяти, которая расположена на системной плате Изначально основным назначением BIOS было обслуживание устройств ввода / вывода (клавиатура, экрана и дисковых накопителей), поэтому ее и назвали базовая система ввода / вывода. В современных компьютерах BIOS выполняет несколько функций:

  • Запуск компьютера и процедура самотестирования (Power on SelfTest - POST). Программа, расположенная в микросхеме BIOS, загружается первой после включения питания компьютера. Она детектирует и проверяет установленное оборудование, настраивает его и готовит к работе. Если обнаруживается неисправность оборудования, процедура POST останавливается с выводом соответствующего сообщения или звукового сигнала.

  • Настройка параметров системы с помощью программы BIOS Setup. Во время процедуры POST оборудование настраивается в соответствии с параметрами, хранящимися в специальной CMOS - памяти. Изменяя эти параметры, пользователи могут конфигурировать отдельные устройства и систему в целом по своему усмотрению. Редактируются они в специальной программе, которую называют BIOS Setup или CMOS Setup.

  • Поддержка функций ввода / вывода с помощью программных прерываний BIOS. В составе системной BIOS есть встроенные функции для работы с клавиатурой, видеоадаптером, дисководами, жесткими дисками, портами ввода / вывода и др. Эти функции использовались в операционных системах, подобных MS-DOS, и почти не применяются в современных версиях Windows.


Раздел 7. Вычислительные системы

7.1 Архитектура ВС

Вычислительные системы (ВС) - это комплекс аппаратных и программных средств, предназначенный для организации вычислительных процессов. Понятие ВС сформировалось при появлении многопроцессорных ЭВМ и комплексов объединенных ЭВМ, целью создания которых было повышение производительности за счет распараллеливания вычислений. ВС создавались для решении сложных задач и обработки больших массивов данных за приемлемое время. ВС характеризуется своей архитектурой, которая определяет направление и взаимодействие потоков команд и данных. Большое разнообразие ВС породило естественное желание ввести для них какую-то классификацию. Эта классификация должна однозначно относить ту или иную ВС к некоторому классу, который, в свою очередь, должен достаточно полно ее характеризовать. Таких попыток предпринималось множество, что отразилось в большом количестве видов классификации ВС (классификация Фенга, Скилликорна, Дункана и др.). Одна из первых классификаций, ссылки на которую наиболее часто встречаются в литературе, была предложена М. Флинном в конце 60-х годов 20-го  века. Она базируется на понятиях двух потоков: команд и данных. На основе числа этих потоков выделяется четыре класса архитектур:

  •   SISD (Single Instruction Single Data) - единственный поток команд и единственный поток данных. По сути дела это классическая машина фон Неймана. К этому классу относятся все однопроцессорные системы.

  •   SIMD (Single Instruction Multiple Data) - единственный поток команд и множественный поток данных. Типичными представителями являются матричные компьютеры, в которых все процессорные элементы выполняют одну и ту же программу, применяемую к своим (различным для каждого ПЭ) локальным данным.

  •   MISD (Multiple Instruction Single Date) - множественный поток команд и единственный поток данных. М. Флинн не смог привести ни одного примера реально существующей системы, работающей на этом принципе.

  •   MIMD (Multiple Instruction Multiple Date) - множественный поток команд и множественный поток данных. К этому классу относятся практически все современные многопроцессорные системы.

Существенные архитектурные признаки вычислительных систем.

Наибольшие архитектурные изменения произошли в машинах третьего поколения, в ВС построенных на ИС. В этом поколении можно выделить ряд существенных признаков.

  • По элементной базе - переход от дискретных полупроводниковых элементов к интегральным схемам (ИС). Это уменьшило габариты, энергоемкость, повысило надежность ВС.

  • По структуре данных и команд - переход к стандартным структурам: байт (6, в дальнейшем 8 бит); полуслово (16 бит, 2 байта); слово (32 бит, 4 байта); двойное слово (64 бит, 8 байт). В ВС введено несколько форматов команд, имеющих в целом побайтовую структуру.

  • В центральном процессоре введена система прерывания.

  • Все управление ВС автоматизировано, верхний уровень автоматизации осуществляет комплекс программ, объединенный в операционную систему (ОС). ОС является неотъемлемой частью ВС, без которой она работать не может. Пользователь общается с ВС через ОС, которая синхронизирует работу аппаратной части ВС через систему прерываний и таймер - электронные часы.

  • ВС работает в многопрограммном режиме работы.

  • Усилена иерархия памяти; ОЗУ делится на блоки с независимыми системами управления, могущие работать одновременно, в процессоре появляются элементы ограниченной сверхбыстродействующей памяти на электронных регистрах. Ячеечная структура ОЗУ дополняется более крупным структурным объединением - страницей, сегментом.

  • Значительно расширена номенклатура и число периферийных устройств и устройств внешней памяти, в том числе вводятся в качестве основного устройства внешней памяти магнитные диски НМД (накопители на магнитных дисках).

  • Несколько моделей одной архитектуры, отличающихся производительностью, но программно совместимых "снизу вверх" с совместимыми для всех моделей периферийными и внешними запоминающими устройствами, объединены в одно семейство (ряд).

  • Введены специальные периферийные процессоры (каналы) для управления ВЗУ и периферией.

Основополагающие принципы (параллелизма, программируемости, однородности) и принципы модульности и близкодействия позволяют достичь полноты архитектурных свойств в вычислительных системах. Отметим важнейшие свойства архитектуры ВС. При этом заметим, что не все свойства и не в полной мере могут проявляться в той или иной реализации ВС.

Масштабируемость (Scalability) вычислительных систем

Под масштабируемостью ВС понимается их способность к наращиванию и сокращению ресурсов, возможность варьирования производительности. Сложность (трудоемкость) задач, решаемых на вычислительных средствах, постоянно растет. Для сохранения в течении длительного времени за вычислительной системой способности быть адекватным средством решения сложных задач необходимо, чтобы она обладала архитектурным свойством масштабируемости. Это означает, в частности, что производительность, достигнутую ВС на заданном количестве вычислителей, можно увеличить, добавив еще один или несколько вычислителей. Выполнение этого свойства ВС гарантируется принципами модульности, локальности, децентрализованности и распределённости.

Свойство наращиваемости производительности предоставляет потенциальную возможность решать задачи любой априори заданной сложности. Однако для практической реализации этой возможности требуется, чтобы алгоритм решения сложной задачи удовлетворял условию локальности, а межмодульные пересылки информации слабо влияли на время решения задачи. Это может быть достигнуто за счет крупноблочного распараллеливания сложных задач и (или) аппаратурных средств, позволяющих совместить межмодульные обмены информацией с вычислениями.

Универсальность ВС. Вычислительные системы алгоритмически и структурно универсальны.

Принято считать, что ЭВМ (основанные на модели вычислителя) являются алгоритмически универсальными, если они обладают способностью (без изменения своих структур) реализовать алгоритм решения любой задачи. С другой стороны, ВС – это коллектив вычислителей, каждый из которых обладает алгоритмической универсальностью, следовательно, и система универсальна (в общепринятом смысле).

В вычислительных системах могут быть реализованы не только любые алгоритмы, доступные ЭВМ, но и параллельные алгоритмы решения сложных задач. Последнее следует из определений модели коллектива вычислителей и, в частности, алгоритма функционирования ВС.

Структурная универсальность ВС – следствие воплощения архитектурных принципов коллектива вычислителей, в частности, принципа программируемости структуры. Суть этого принципа – возможность автоматически (программно) порождать специализированные (проблемно-ориентированные) виртуальные конфигурации, которые адекватны структурам и параметрам решаемых задач.

Таким образом, вычислительные системы сочетают в себе достоинства цифровой техники, где процесс вычислений в основном задаётся алгоритмически (точнее: программно) и аналоговой техники, где процесс вычислений предопределяется структурными схемами.

Структурная универсальность позволяет говорить и о специализированности ВС: для каждой задачи допустима автоматическая настройка такой конфигурации из ресурсов ВС, которая наиболее адекватна алгоритму решения задачи. Итак, вычислительная система – это средство, в котором диалектически сочетаются противоположные свойства универсальности и специализированности.

Производительность (Performance) вычислительных систем

В отличие от ЭВМ, построенных на основе модели вычислителя, ВС не имеют принципиальных ограничений в наращивании производительности. Рост производительности в них достигается за счёт не только повышения физического быстродействия микроэлектронных элементов, а главным образом увеличения числа вычислителей. Следует подчеркнуть, что благодаря свойству однородности наращиваемость ВС осуществляется простым подключением дополнительных вычислений без конструктивных изменений первоначального состава системы. При этом достигается простота настройки программного обеспечения на заданное число вычислителей в системе. На основании последнего обеспечивается совместимостьВС различной производительности.

Реконфигурируемость (Programmability) вычислительных систем

Структурная и функциональная гибкости ВС вытекают из широких возможностей систем по статической и динамической реконфигурации. Статическая реконфигурация ВС обеспечивается: варьированием числа вычислителей, их структуры и состава; выбором для вычислителей числа полюсов для связи c другими вычислителями; возможностью построения структур в виде графов, относящихся к различным классам; допустимостью применения в качестве связей каналов различных типов, различной физической природы и различной протяжённости и т.п. Благодаря приспособленности ВС к статической реконфигурации достигается адаптация системы под область применения на этапе её формирования.

Динамическая реконфигурация ВС достигается возможностью образования в системах таких подсистем, структуры и функциональные организации которых адекватны входной мультипрограммной ситуации и структурам решаемых задач. Следовательно, способность ВС к динамической реконфигурации приводит к её высокой универсальности, при которой достигается заданный уровень производительности при решении широкого класса задач, реализуются известные в вычислительной технике режимы функционирования (коллективное пользование, пакетная обработка и др.), способы управления вычислительным процессом (централизованный, децентрализованный и др.), структурные схемы (изолированные вычислительные машины, системы из нескольких процессоров и одной ЭВМ, системы из одной ЭВМ и нескольких устройств памяти и т.п.) и способы обработки информации (конвейерный, матричный, распределённый и др.).

Надёжность и живучесть вычислительных систем

Данные два понятия семантически близки, оба призваны характеризовать архитектурные способности ВС по выполнению возглавляемых на них функций. Однако каждое из них отражает специфические особенности ВС по использованию исправных ресурсов при переработке информации.

Под надёжностью (Reliability) ВС понимается ее способность к автоматической (программной) настройке и организации функционирования таких структурных схем, которые при отказах   и   восстановлении    вычислителей  обеспечивают заданный уровень производительности или, говоря иначе, возможность использовать фиксированное число исправных вычислителей (при реализации параллельных программ решения сложных задач). Это понятие характеризует возможности вычислительных систем по переработке информации при наличии фиксированной структурной избыточности (представленной частью вычислителей) и при использовании параллельных программ с заданным числом ветвей.

Под живучестью (Robustness) ВС понимается свойство программной настройки и организации функционирования таких структурных схем, которые в условиях отказов и восстановления вычислителей гарантируют при выполнении параллельной программы производительность в заданных пределах или возможность использования всех исправных вычислителей. Понятие живучести вычислительных систем характеризует их способности по организации отказоустойчивых вычислений или, говоря иначе, по реализации параллельных программ, допускающих варьирование числа ветвей в известных пределах.

При рассмотрении живучести ВС выделяют полный и частичный отказы. Под полным отказом ВС понимается событие, состоящее в том, что система теряет способность выполнять параллельную программу с переменным числом ветвей. Частичным отказом считают событие, при котором имеют место отказы вычислителей, однако сохраняется возможность реализации на ВС параллельной программы с переменным числом ветвей. Полный отказ делает производительность системы равной нулю, а частичный отказ приводит лишь к некоторому снижению производительности, т.е. к увеличению времени реализации параллельной программы с переменным числом ветвей. Понятия полного и частичного восстановления ВС очевидны.

В живучих ВС допустимо использование аппаратурной избыточности на уровне отдельных функциональных устройств и узлов вычислителей, однако эта избыточность играет лишь вспомогательную роль.

Следует подчеркнуть, что в живучей ВС в любой момент функционирования используется суммарная производительность всех исправных вычислителей. Из последнего следует, что программы решения задач должны обладать свойством адаптируемости (под число исправных вычислителей) и иметь информационную избыточность.

Самоконтроль и самодиагностика (Self-testing and Self-diagnostics)  вычислительных систем

Организация надёжного и живучего функционирования вычислительных систем связана с контролем правильности их работы и с локализацией неисправностей в них. В системах–коллективах вычислителей может быть применён нетрадиционный подход к контролю и диагностике:

  1. в качестве контрольно-диагностического ядра ВС могут быть использованы любые исправные вычислители и в пределе ядро любого произвольно выбранного вычислителя,

  2. выбор ядра системы и определение её исправности могут быть произведены автоматически ( с помощью средств ВС).

Предлагаемый подход позволяет говорить о самоконтроле и самодиагностике ВС. Заключение об исправности или неисправности отдельных вычислителей системы принимается коллективно всеми вычислителями на основе сопоставления их индивидуальных заключений об исправности соседних с ними вычислителей.

Технико-экономическая эффективность (Technical-economical Efficiency) вычислительных систем 

Конструктивная однородность позволяет резко сократить сроки разработки и изготовления систем, приводит к высокой технологичности производства, упрощает и статическую, и динамическую реконфигурации ВС, облегчает их техническую эксплуатацию. Она существенно упрощает процесс организации взаимодействий между вычислителями ВС и облегчает создание программного обеспечения. Полнота воплощения трёх основных принципов модели коллектива вычислителей позволяет заметно ослабить зависимость между ростом производительности ВС и увеличением трудоёмкости их проектирования и изготовления, а также создания системного программного обеспечения. Они открывают возможность построения высокопроизводительных экономически приемлемых вычислительных систем при существующей физико-технологической базе. Более того, возможность неограниченно наращивать производительность позволяет применить для построения ВС микроэлектронные элементы с быстродействием, далеким от предельного, и следовательно, обладающие более высокой надежностью и меньшим энергопотреблением. В свою очередь, последнее приводит к снижению расходов на установку искусственного климата и содержание эксплуатационного персонала ВС.



7.2 Способы повышения быстродействия ЭВМ и ВС

Повышение производительности вычислительных систем предусматривает прежде всего достижение высокой скорости исполнения программ. Такая цель соответствует как требованиям пользователей, заинтересованных в наиболее быстром получении результатов счета, так и тому обстоятельству, что быстродействие определяет общее количество вычислительной работы, которую способна выполнить система за данный отрезок времени.

В ряде прикладных областей повышение скорости вычислений играет большую роль, так как время решения задач на стандартных ЭВМ обычно оказывается слишком большим с точки зрения практического использования результатов. Разумеется, стоимостные факторы и в этом случае имеют существенное значение, однако более важным становится обеспечение самой возможности получения результатов за приемлемое время при минимальной (насколько это удается) стоимости вычислений.

Именно в таких прикладных областях и требуются суперЭВМ.

Основными факторами, определяющими высокую стоимость суперЭВМ, являются:

    1. Большие затраты на конструирование, обусловленные сложностью оборудования и относительно малым серийным выпуском.

    2. Высокая стоимость аппаратуры, для создания которой требуются новые технологии, способные обеспечить предельные для нынешнего уровня развития техники показатели. На стоимость аппаратуры влияют также увеличение числа логических элементов, количества выделяемой теплоты в единице объема и другие подобные факторы.

    3. Дорогостоящее программное обеспечение, включающее специальные средства, которые позволяют реализовать потенциально высокое быстродействие систем.

Область применения методов достижения высокого быстродействия охватывает все уровни создания систем.

На самом нижнем уровне - это передовая технология конструирования и изготовления быстродействующих элементов и плат с высокой плотностью монтажа. В этой сфере лежит наиболее прямой путь к увеличению скорости, поскольку если бы, например, удалось все задержки в машине сократить в К раз, то это привело бы к увеличению быстродействия в такое же число раз. В последние годы были достигнуты огромные успехи в создании быстродействующей элементной базы и адекватных методов монтажа, и ожидается дальнейший прогресс, основанный на использовании новых технологий и снижения размеров устройств. Этот путь, однако, имеет ряд ограничений:

1. Для определенного уровня технологии обеспечивается определенный уровень быстродействия элементной базы: как только он оказался достигнутым, дальнейшее увеличение быстродействия сопровождается огромными расходами вплоть до достижения того порога, за которым уже нет технологий, обеспечивающих большее быстродействие.

2. Более быстродействующие элементы обычно имеют меньшую плотность монтажа, что, в свою очередь, требуют более длинных соединительных кабелей между платами и, следовательно, приводит к увеличению задержек (за счет соединений) и уменьшению выигрыша в производительности.

3. Более быстродействующие элементы обычно рассеивают больше тепла. Поэтому требуются специальные меры по теплоотводу, что еще больше снижает плотность монтажа и, следовательно, быстродействие. Для того чтобы избежать дополнительных расходов, задержек за счет соединений и увеличения рассеяния тепла, целесообразно, по-видимому, применять быстродействующие элементы не везде, а только в тех частях, которые соответствуют . Например, чтобы увеличить скорость сложения, можно применить высокоскоростные схемы только в цепи переноса. Однако путь увеличения быстродействия элементов имеет свои ограничения и может наступить момент, когда станет необходимым или более целесообразным использовать для реализации операции сложения другие способы.

Следующий шаг в направлении повышения быстродействия  предполагает уменьшение числа логических уровней  при реализации комбинационных схем. Хорошо известно, что любая функция может быть реализована с помощью схемы с двумя логическими уровнями. Однако в сложных системах это приводит к появлению громоздких устройств, содержащих очень большое число вентилей с чрезмерными коэффициентами соединений по входу и выходу. Следовательно, на данном этапе конструкторская задача состоит в создании схем с малым числом логических уровней, которое бы удовлетворяло ограничениям по количеству вентилей и их коэффициентам соединений по входу и выходу. В настоящее время разработаны принципы построения схем, требующих меньшее число вентилей и обладающих меньшими задержками, и предложены методы их создания. В силу присущих ограничений только один этот путь, как правило, не может дать требуемого увеличения производительности.

Следующий уровень охватывает способы реализации основных операций, таких как сложение, умножение и деление. Для того чтобы увеличить cкорость выполнения этих операций, необходимо использовать алгоритмы, которые приводили бы к быстродействующим комбинационным схемам и требовали небольшого числа циклов. В результате успешных исследований и разработок в области арифметических устройств создан ряд алгоритмов, которые могут быть использованы в условиях тех или иных ограничений. С точки зрения применения высокопроизводительных вычислительных машин для научных расчетов особый интерес представляет реализация принципа опережающего просмотра при операциях сложения, сложения с сохраняемым переносом и записи при матричном умножении. Сюда же относятся проблемы использования избыточности при делении и реализация деления в виде цепочки операций умножения.

Далее, быстродействие вычислительных систем может быть повышено за счет реализации аппаратными или программно-аппаратными средствами встроенных сложных команд соответствующих тем или иным функциям, встречающимся во многих практических вычислениях. К таким функциям относятся, например, корень квадратный, сложение векторов, умножение матриц и быстрое преобразование Фурье. Указанные средства позволяют сократить число команд в программах и создают предпосылки для более эффективного использования машинных ресурсов (например, конвейеризованных арифметических устройств). При решении некоторых задач получаемый выигрыш может быть весьма существенным, что особенно хорошо видно на примере рассматриваемых ниже векторных ЭВМ, в которых основную роль играют векторные команды. С другой стороны, непросто определить такие сложные команды, которые бы достаточно часто использовались в широком классе прикладных программ. В то же время исследования процессов выполнения большого числа программ из разных прикладных областей показывают, что существует явное смещение частот использования в направлении небольшого набора простых команд. Этот факт послужил основой для развития подхода, при котором из множества команд выделяется небольшое подмножество простых и часто используемых команд, подлежащих оптимизации. В настоящее время уже разработан ряд экспериментальных и промышленных образцов процессоров, использующих принцип оптимизации сокращенного набора команд. Влияние этого подхода на прогресс в области высокоскоростных вычислений нуждается в оценке.

Еще один резерв, используемый для повышения эффективности работы процессора,- это сокращение временных затрат при обращениях к памяти. Обычные подходы здесь состоят, во-первых, в расширении путей доступа за счет разбиения памяти на модули, обращение к которым может

осуществляться одновременно; во-вторых, в применении дополнительной сверхбыстродействующей памяти (кэш-памяти) и, наконец, в увеличении числа внутренних регистров в процессоре. Как показано ниже, использование всех перечисленных способов тесно связано с организацией систем. Длительность исполнения одной команды может быть уменьшена за счет временного перекрытия различных ее фаз. К примеру, вычисление адреса, по которому нужно записать результат, может быть выполнено одновременно с самой операцией. Этот подход требует, разумеется, дополнительного оборудования, поскольку модули памяти не могут быть одновременно задействованы в совмещаемых фазах. Увеличение быстродействия, которое можно при этом достичь, зависит от формата (состава) команды, поскольку именно им определяется наличие независимых фаз.

Наконец, мы подходим к структуре алгоритма, по которому работает система. На этом уровне основной подход к повышению быстродействия состоит в том, чтобы выполнять одновременно несколько команд. Этот подход отличается от того, который реализован в обычной фон-неймановской машине, когда команды исполняются строго последовательно одна за другой. Параллельный подход приводит к различным вариантам архитектуры в зависимости от способа, по которому осуществляется задание очередности следования команд и управление их исполнением. Распараллеливание позволяет значительно увеличить производительность систем при решении широкого класса прикладных задач.

Перечисленные подходы касаются аппаратуры, логической организации и архитектуры систем. Усилия, затрачиваемые в этих областях, имеют своей целью обеспечение необходимого ускорения вычислений на программно-алгоритмическом уровне. На этом уровне должны использоваться либо специальные языки программирования, предоставляющие средства для явного описания параллелизма, либо методы выявления параллелизма в последовательных программах. Кроме того, алгоритм должен обладать внутренним параллелизмом, соответствующим особенностям данной архитектуры. Использование неадекватных алгоритмов и языков способно практически свести на нет возможности для реализации высокоскоростных вычислений, заложенные в архитектуре.


Корпус и блок питания

Корпус компьютера обеспечивает установку в себя всех компонентов. Корпуса различаются по форм-фактору. 
Блок питание обеспечивает питание всем элементам компьютера. Различаются по мощности и по версии стандарта ATX. От версии зависят многие факторы: количество и типы разъемов, КПД БП, стабильность напряжения, и т.д. 
Как правило все новые корпуса идут в комплекте с БП, но в некоторых случаях требуется замена БП.

Замена блока питания 
1. Вскройте корпус
2. Отсоедините кабели питания старого БП от всех устройств
3. Открутите крепление старого и снимите БП. Как правило, это 4 винта на задней панели.

4. Если на старом БП останутся элементы монтажа, открутите их и закрепите на новом БП 
5. Вставьте БП, закрепите его винтами
6. Подсоедините кабели питания к МП, и остальным устройствам (CD/DVD, FDD, HDD, видеоплата)
7. Собрать корпус
8. Включите компьютер, зайдите в БИОС (DEL)
9. В меню диагностики, проверти правильность выходных напряжений
10. Установка завершена

Раздел 5. Организация системы памяти и принципы ее работы

5.1 Общие сведения и классификация устройств памяти

Памятью компьютера называется совокупность устройств для хранения программ, вводимой информации, промежуточных результатов и выходных данных. Классификация памяти представлен на рисунке:

Внутренняя память предназначена для хранения относительно небольших объемов информации при ее обработке микропроцессором.

Внешняя память предназначена для длительного хранения больших объемов информации независимо от того включен или выключен компьютер.

Энергозависимой называется память, которая стирается при выключении компьютера.

Энергонезависимой называется память, которая не стирается при выключении компьютера.

К энергонезависимой внутренней памяти относится постоянное запоминающее устройство (ПЗУ). Содержимое ПЗУ устанавливается на заводе-изготовителе и в дальнейшем не меняется. Эта память составлена из микросхем, как правило, небольшого объема. Обычно в ПЗУ записываются программы, обеспечивающие минимальный базовый набор функций управления устройствами компьютера. При включении компьютера первоначально управление передается программе из ПЗУ, которая тестирует компоненты компьютера и запускает программу-загрузчик операционной системы.

К энергозависимой внутренней памяти относятся оперативное запоминающее устройство (ОЗУ), видеопамять и кэш-память. В оперативном запоминающем устройстве в двоичном виде запоминается обрабатываемая информация, программа ее обработки, промежуточные данные и результаты работы. ОЗУ обеспечивает режимы записи, считывания и хранения информации, причём в любой момент времени возможен доступ к любой произвольно выбранной ячейке памяти. Это отражено в англоязычном названии ОЗУ – RAM (Random Access Memory – память с произвольным доступом). Доступ к этой информации в ОЗУ осуществляется очень быстро. Эта память составлена из сложных электронных микросхем и расположена внутри корпуса компьютера. Часть оперативной памяти отводится для хранения изображений, получаемых на экране монитора, и называется видеопамять. Чем больше видеопамять, тем более сложные и качественные картинки может выводить компьютер. Высокоскоростная кэш-память служит для увеличения скорости выполнения операций компьютером и используется при обмене данными между микропроцессором и RAM. Кэш-память является промежуточным запоминающим устройством (буфером). Существует два вида кэш-памяти: внутренняя, размещаемая внутри процессора и внешняя, размещаемая на материнской плате.

Внешняя память может быть с произвольным доступом и последовательным доступомУстройства памяти с произвольным доступом позволяют получить доступ к произвольному блоку данных примерно за одно и то же время доступа.

Выделяют следующие основные типы устройств памяти с произвольным доступом:

1. Накопители на жёстких магнитных дисках (винчестерыНЖМД) - несъемные жесткие магнитные диски. Ёмкость современных винчестеров от сотен мегабайт до нескольких сотен гигабайт. На современных компьютерах это основной вид внешней памяти. Первые жесткие диски состояли из 2 дисков по 30 Мбайт и обозначались 30/30, что совпадало с маркировкой модели охотничьего ружья “Винчестер” - отсюда пошло такое название этих накопителей.

2. Накопители на гибких магнитных дисках (флоппи-дисководы, НГМД) – устройства для записи и считывания информации с небольших съемных магнитных дисков (дискет), упакованные в пластиковый конверт (гибкий - у 5,25 дюймовых дискет и жесткий у 3,5 дюймовых). Максимальная ёмкость 5,25 дюймовой дискеты - 1,2Мбайт; 3,5 дюймовой дискеты - 1,44Мбайт. В настоящее время 5,25 дюймовые дискеты морально устарели и не используются.

3. Оптические диски (СD-ROM Compact Disk Read Only Memory) - компьютерные устройства для чтения с компакт-дисков. CD-ROM диски получили распространение вслед за аудио-компакт дисками. Это пластиковые диски с напылением тонкого слоя светоотражающего материала, на поверхности которых информация записана с помощью лазерного луча. Лазерные диски являются наиболее популярными съемными носителями информации. При размерах 12 см в диаметре их ёмкость достигает 700 Мб. В настоящее время все более популярным становится формат компакт-дисков DVD-ROM, позволяющий при тех же размерах носителя разместить информацию объемом 4,3 Гб. Кроме того, доступными массовому покупателю стали устройства записи на компакт диски. Данная технология получила название CD-RW и DVD-RW соответственно.

Устройства памяти с последовательным доступом позволяют осуществлять доступ к данным последовательно, т.е. для того, чтобы считать нужный блок памяти, необходимо считать все предшествующие блоки. Среди устройств памяти с последовательным доступом выделяют:

1. Накопители на магнитных лентах (НМЛ) – устройства считывания данных с магнитной ленты. Такие накопители достаточно медленные, хотя и большой ёмкости. Современные устройства для работы с магнитными лентами – стримеры – имеют увеличенную скорость записи 4 - 5Мбайт в сек. Существуют также, устройства позволяющие записывать цифровую информацию на видеокассеты, что позволяет хранить на 1 кассете 2 Гбайта информации. Магнитные ленты обычно используются для создания архивов данных для долговременного хранения информации.

2. Перфокарты – карточки из плотной бумаги и перфоленты – катушки с бумажной лентой, на которых информация кодируется путем пробивания (перфорирования) отверстий. Для считывания данных применяются устройства последовательного доступа. В настоящее время данные устройства морально устарели и не применяются.

Различные виды памяти имеют свои достоинства и недостатки. Так, внутренняя память имеет хорошее быстродействие, но ограниченный объем. Внешняя память, наоборот, имеет низкое быстродействие, но неограниченный объем. Производителям и пользователям компьютеров приходится искать компромисс между объемом памяти, скоростью доступа и ценой компьютера, так комбинируя разные виды памяти, чтобы компьютер работал оптимально. В любом случае, объем оперативной памяти является основной характеристикой ЭВМ и определяет производительность компьютера.

Кратко рассмотрим принцип работы оперативной памяти. Минимальный элемент памяти - бит или разряд способен хранить минимально возможный объем информации - одну двоичную цифру. Бит очень маленькая информационная единица, поэтому биты в памяти объединяются в байты - восьмерки битов, являющиеся ячейками памяти. Все ячейки памяти пронумерованы. Номер ячейки называют ее адресом. Зная адрес ячейки можно совершать две основные операции:

1) прочитать информацию из ячейки с определенным адресом;

2) записать информацию в байт с определенным адресом.

Чтобы выполнить одну из этих операций необходимо, чтобы от процессора к памяти поступил адрес ячейки, и чтобы байт информации был передан от процессора к памяти при записи, или от памяти к процессору при чтении. Все сигналы должны передаваться по проводникам, которые объединены в шины.

По шине адреса передается адрес ячейки памяти, по шине данных – передаваемая информация. Как правило, эти процессы проходят одновременно.

Для работы ОЗУ используются еще 3 сигнала и соответственно 3 проводника. Первый сигнал называется запрос чтения, его получение означает указание памяти прочесть байт. Второй сигнал называется запрос записи, его получение означает указание памяти записать байт. Передача сразу обоих сигналов запрещена. Третий сигнал – сигнал готовности, используемый для того, чтобы память могла сообщить процессору, что она выполнила запрос и готова к приему следующего запроса.


На материнской плате расположена память следующих четырех типов.

1) Оперативная память. Ее называют также оперативное запоминающее устройство (ОЗУ) или RAM (Random Access Memory). При выключении питания все данные теряются, т.е. ОЗУ - это энергозависимая память с произвольной выборкой данных.

Она обеспечивает чтение и запись информации по указанным адресам. Реализована на СБИС. Время доступа обычно составляет от 6 до 60 нс. ОЗУ может быть статическая или динамическая. Конструктивно представляет собой небольшую печатную плату с размещенными на ней микросхемами. Такую плату называют SIMM-модуль. Она может иметь 72 контакта (72-pin) для подключения. Или это DIMM-модуль, как линейка на 168 контактов (168-pin).

В зависимости от конструкции материнской платы есть разные типы оперативной памяти. ECC - память с контролем четности, EDO- хранит последние запрошенные данные в своем КЭШе. SDRAM - память с частотой до 100 МГц и с временем доступа менее 12 нс. DDR SDRAM – это память с повышенной скоростью работы.

2) Сверхоперативная память (КЭШ-память) используется для согласования скорости работы относительно медленных устройств с быстрыми устройствами. Например, КЭШ-память может быть между оперативной памятью ПК и его МП.

3) Постоянное запоминающее устройство (ПЗУ) содержит записанные программы, реализующие, в частности, функции базовой системы ввода-вывода (BIOS – Basic Input-Output System), диагностику исправного состояния устройств ПК в момент включения питания (POST – Power-On-Self-Test), настройку параметров ПК (SetUp) и загрузку операционной системы (BOOT).

4) Энергонезависимая память (CMOS - память). Вместе с таймером ПК она питается от аккумулятора. Содержит изменяемые (SetUp) и постоянные параметры аппаратной конфигурации ПК.

В системном блоке ПК обычно устанавливаются следующие типы накопителей.

1) Накопители на гибких магнитных дисках (НГМД). Обеспечивают запись и считывание информации. В качестве носителя информации используются дискеты (флоппи-диски). Конструктивно они располагаются в защитной пластмассовой оболочке. Обычно современный дискеты имеют размер 3,5" и емкость 1,44 Мб. Их форматирование (разметка на дорожки и сектора) производится по командам операционной системы Windows. На смену им приходят устройства ZIP размером 3,5" и емкостью от 100 до 200 Мб.

2) Накопители на жестких магнитных дисках (НЖМД). Также обеспечивают запись и считывание информации. В качестве носителя информации используются пакеты дисков (пластин). Конструктивно они располагаются в герметически закрытом блоке и приводятся во вращение двигателем. Скорость вращения в современных конструкциях может достигать 7 и более тысяч оборотов в минуту. Емкость современных НЖМД достигает 120 и более Гб. Скорость передачи данных – от 5 до 160 Мбайт/с. Среднее время наработки на отказ около 200 тыс. часов. Число и размер кластеров определяется таблицей FAT (16 или 32 бита в ОС Windows) и емкостью конкретного НЖМД.

3) Накопители на компактных дисках. CD-ROM (Compact Disk Read Only Memory) – это компактный диск только для чтения информации. Его емкость обычно около 700 Мбайт. Широко используются в последние годы с ПК. Имеют разные функциональные возможности. Например, это могут быть CD-ROM - устройство для чтения компактных дисков, CD-R - устройство для записи компактных дисков, CD-RW - устройство для перезаписываемых компактных дисков. В любом случае объемы записываемой информации около 700 Мб.

Основным параметром дисководов CD-RОМ является скорость чтения данных. За единицу измерения принята скорость чтения в первых образцах дисководов CD-RОМ, составлявшая 150 Кбайт/с. Таким образом, дисковод с удвоенной (2х) скоростью чтения обеспечивает производительность 300 Кбайт/с, с учетверенной (4х) скоростью — 600 Кбайт/с и т. д. В настоящее время наибольшее распространение имеют устройства чтения CD-ROM с производительностью 48х.

4) Накопители на цифровых дисках (DVD – дисководы). В 1997 году появилась оптическая технология хранения информации на многослойных двусторонних цифровых универсальных дисках DVD (Digital Versatile Disk – цифровой многоцелевой диск). Это более емкий (до 17 Гб) и более быстрый компакт-диск, который может содержать аудио, видео и компьютерные данные.

DVD-диск читается соответствующим дисководом, подключенным к компьютеру. Это могут быть DVD-ROM - устройство для чтения дисков, DVD-R - устройство для записи дисков, DVD-RW - устройство для перезаписываемых дисков. Емкость от 4,7 Гб (1 сторона/1 слой) до 17 Гбайт (2 стороны/2 слоя). Один DVD-диск заменяет от 7 до 26 стандартных CD-дисков. Время воспроизведения от 133 мин. до 484 мин. Могут содержать аудио, видео и компьютерные данные.



Входной контроль

Контрольные вопросы

1. Общая структура вычислительной системы, назначение ее элементов.

2. Классификация внешних запоминающих устройств.

3. Классификация оперативной памяти.

4. Конструктивные элементы системного блока

5. Основной цикл работы ЭВМ.

6. История развития микропроцессоров.

7. Устройства ввода информации.

8. Устройства вывода информации.

9. Что такое адрес ячейки памяти ЭВМ?

10. Что такое адресное пространство ЭВМ, чем определяются его размеры?

11. Процессор ЭВМ, его компоненты и их назначение.

12. Для чего в процессоре нужно устройство управления?

13. Для чего в процессоре нужно устройство управления?

14. Что собой представляет шина компьютера? Каковы функции общей шины (магистрали)?

15. Какую функцию выполняют контроллеры?

16. Как конструктивно выполнены современные микропроцессоры?

17. Что собой представляет гибкий диск?

18. В чём суть магнитного кодирования двоичной информации?

19. Как работают накопители на гибких магнитных дисках и накопители на жёстких магнитных дисках?

20. Каковы достоинства и недостатки накопителей на компакт-дисках?

21. Опишите работу стримера.

22. Как работает аудиоадаптер? Видеоадаптер?

23. Какие типы видеоплат используются в современных компьютерах?

24. Назовите главные компоненты и основные управляющие клавиши клавиатуры.

25. Перечислите основные компоненты видеосистемы компьютера.

26. Как формируется изображение на экране цветного монитора?

27. Как устроены жидкокристаллические мониторы? Проведите сравнение таких мониторов с мониторами, построенными на основе ЭЛТ.

28. Опишите работу матричных, лазерных и струйных принтеров.

29. Чем работа плоттера отличается от работы принтера?

30. Опишите способ передачи информации посредством модема.

31. Перечислите основные виды манипуляторов и опишите принципы их работы.


Вариант 1

  1. Компьютер - это ...

    • Электронный прибор с клавиатурой и экраном;

    • Устройство для выполнения вычислений;

    • Универсальное устройство для хранения, обработки и передачи информации.

  2. В минимальный базовый набор устройств компьютера входят ...

    • Монитор, клавиатура, системный блок;

    • Дисковод, принтер, монитор;

    • Монитор, принтер, клавиатура.

  3. Укажите, в какой из групп устройств перечислены устройства ввода-вывода информации

    • Стример, винчестер, мышь;

    • Монитор, принтер, клавиатура;

    • Винчестер, лазерный диск, дискета.

  4. Укажите, в какой из групп устройств перечислены устройства ввода информации

    • Принтер, винчестер, мышь;

    • Мышь, клавиатура, джойстик, световое перо, сканер;

    • Монитор, принтер, плоттер, звуковые колонки.

  5. Укажите, какая из перечисленных групп устройств относится к внешней памяти компьютера?

    • Монитор, дискета, мышь;

    • Дисковод, дискета, оперативная память;

    • Магнитная лента, лазерный диск, дискета.

  6. Где сохраняется информация (не исчезает) после отключения питания компьютера?

    • В оперативной памяти;

    • В постоянной памяти;

    • В процессоре.

  7. Какое устройство предназначено для преобразования и передачи информации между удаленными компьютерами?

    • Процессор;

    • Дисковод;

    • Модем.

  8. Видеопамять - это часть оперативной памяти, которая предназначена для ...

    • Хранения текстовой информации;

    • Хранения информации о графическом изображении на экране;

    • Постоянного хранения графической информации.

  9. Дисковод - это устройство для ...

    • Вывода информации на бумагу;

    • Перевода чисел из одной системы счисления в другие;

    • Долговременного хранения информации;

    • Чтения/записи данных с внешнего носителя.

Входной контроль

Вариант 2

  1. Персональные компьютеры бывают ...

  • Монохромные, цветные, черно-белые;

  • Настольные, портативные, карманные;

  • Матричные, лазерные, струйные.

  1. Принтеры бывают ...

  • Настольные, портативные, карманные;

  • Матричные, лазерные, струйные;

  • Монохромные, цветные, черно-белые.

  1. Укажите, в какой из групп устройств перечислены устройства вывода информации

  • Принтер, винчестер, мышь;

  • Винчестер, лазерный диск, модем;

  • Монитор, принтер, плоттер, звуковые колонки.

  1. Укажите, какое из перечисленных устройств относится к внешним устройствам компьютера ?

  • Центральный процессор;

  • Сканер;

  • Оперативная память.

  1. Какое устройство предназначено для обработки информации?

  • Процессор;

  • Дисковод;

  • Модем.

  1. Где информация исчезает после отключения питания компьютера?

  • В оперативной памяти;

  • В постоянной памяти;

  • На дискете.

  1. Дискеты, винчестеры, компакт-диски - это всё ...

  • Устройства для хранения информации;

  • Устройства для кратковременного хранения информации;

  • Устройства для обработки информации.

  1. ОЗУ - это ...

  • Основное записывающее устройство;

  • Оперативное запоминающее устройство;

  • Одноразовое запоминающее устройство.

  1. Устройством ввода текстовой информации является ...

  • Системный блок;

  • Экран дисплея;

  • Клавиатура;

  • Дискета.



Этапы решения задач на ЭВМ
  1. Системный анализ:
  • это научная дисциплина;

  • процесс исследования объекта и описание его в виде системы;

  • информационное моделирование;

  • нет правильного ответа.

  1. Построению информационной модели предшествует:
  • подбор материалов для строительства модели;

  • системный анализ;

  • определение, в какой информационной среде будет строиться модель;

  • нет правильного ответа.

  1. Какая форма отображения графической модели применима для отображения процессов, происходящих во времени:
  • Карта;

  • Схема;

  • Чертеж;

  • График.

  1. Как называется табличная информационная модель, отражающая качественный характер связей между объектами (есть дорога - нет дороги, посещает- не посещает и т.д.):
  • Карта;

  • Матрица;

  • Чертеж;

  • График.

  1. Предметной моделью является:
  • анатомический муляж

  • карта

  • чертеж

  • диаграмма

  1. Минимальным объектом, используемым в векторном графическом редакторе является:
  • точка экрана (пиксель);

  • палитра цветов;

  • знакоместо.

  1. Информационной моделью организации учебного процесса в университете является:

  • правила поведения студентов;

  • список группы;

  • расписания занятий;

  • перечень учебников;

  1. Изучаемый объект может иметь:
  • только одну модель;

  • несколько моделей;

  • не иметь моделей вообще;

  • две модели.

  1. Модель - это замещение изучаемого объекта другим объектом, который отражает:
  • все стороны данного объекта;

  • некоторые стороны данного объекта;

  • несущественные стороны данного объекта;

  • одну сторону данного объекта.

Занимательные задания

Устройства ввода-вывода. Устройства отображения

Ребусы

Кроссворд №1



По горизонтали: 
3. "Мозг" компьютера. 
5. Один из видов информации. 
7. Внешняя память. 
8. Устройство для управления движением на экране. 
9. Минимальная единица информации. 
10. Устройство ввода информации вида 5. 
11. Устройство для связи с Интерентом. 
12. Традиционное устройство запоминания неподвижного изображения. 
13. Вредоносная программа.



По вертикали: 
1. Лицо компьютера. 
2. Специалист, без услуг которого компьютер не работает. 
4. Счетное устройство с косточками. 
6. Устройство для работы с внешней памятью.



Кроссворд№2



По горизонтали: 
3. Устройство для считывания графической информации. 
5. Содружество компьютеров. 
8. Лицо компьютера. 
9. Устройство для подсоединения к компьютеру внешних устройств. 
11. Характеристика памяти. 
12. Без нее не может обойтись графический редактор.



По вертикали: 
1. Устройство для вывода на печать текста и рисунков. 
2. Графопостроитель. 
4. "Официант" для компьютера. 
5. Устройство с магнитной лентой. 
6. ... питания. 
7. Составная часть устройства ввода. 
10. Хранилище информации.

Кроссворд №3



По горизонтали: 
1. Оптическое устройство ввода. 
2. Устройство визуального вывода. 
3. Перечень файлов. 
4. Сигнал, заставляющий процессор приостановить выполняемую операцию, сохраняя свое текущее состояние. 
5. Устройство внешней памяти. 
6. Пересылка данных с носителя в основную память. 
7. Печатающее устройство. 
8. Специальный индикатор, указывающий позицию на экране. 
9. Структура компьютерной системы. 
10. Единица измерения информации.



По вертикали: 
11. Устройство ввода.





Использованная литература


1. Юров В., Хорошенко С. Assembler: учебный курс. – СПб: Питер Ком, 1999. – С. 21-53.

2. Волчок В.А. Микропроцессоры: Избранные лекции. – Гродно: ГрГУ, 1997. – 89 с.

А.П. Пятибратов, А.С. Касаткин, Р.В. Можаров. «ЭВМ, МИНИ – ЭВМ и микропроцессорная техника в учебном процессе». – М: Изд-во МГУ, 1997

А.П. Пятибратов, А.С. Касаткин, Р.В. Можаров. «Электронно-вычислительные машины в управлении». – СПб.: «Питер», 1997

В.Э. Фигурнов. IBM PC для пользователя. / Издание 7-е. М. ИНФРА 1997г

А.Н. Салтовский, Ю.А. Первин. Как работает ЭВМ: серия Мир знаний. / М. Просвещение 1986

А.Г. Кушниренко, Г.В. Лебедев, Р.А. Сворень. Основы информатики и вычислительной техники. / М. Просвещение 1991



-80%
Курсы дополнительного образования

Основы HTML

Продолжительность 72 часа
Документ: Cвидетельство о прохождении курса
4000 руб.
800 руб.
Подробнее
Скачать разработку
Сохранить у себя:
Лекции по информатике Архитектура ЭВМ и ВС (0.57 MB)

Комментарии 1

Чтобы добавить комментарий зарегистрируйтесь или на сайт

юля, 16.04.2012 02:44
классно