Меню
Разработки
Разработки  /  Математика  /  Разное  /  11 класс  /  Конспект урока по математике по теме «Понятие определённого интеграла»

Конспект урока по математике по теме «Понятие определённого интеграла»

Урок познакомит с правилами нахождения определенного интеграла.
18.10.2015

Описание разработки

Определённым интегралом от непрерывной функции f(x) на конечном отрезке [a, b], называется приращение какой-нибудь её первообразной на этом отрезке. (Вообще, понимание заметно облегчится, если повторить тему неопределённого интеграла) При этом употребляется запись

Как видно на графиках внизу (приращение первообразной функции обозначено), определённый интеграл может быть как положительным, так и отрицательным числом (Вычисляется как разность между значением первообразной в верхнем пределе и её же значением в нижнем пределе, т. е. как F(b) - F(a)).

Числа a и b называются соответственно нижним и верхним пределами интегрирования, а отрезок [a, b] – отрезком интегрирования.

Конспект урока по математике по теме Понятие определённого интеграла

Таким образом, если F(x) – какая-нибудь первообразная функция для f(x), то, согласно определению,

Равенство (38) называется формулой Ньютона-Лейбница. Разность F(b) – F(a) кратко записывают так:

Поэтому формулу Ньютона-Лейбница будем записывать и так:

Докажем, что определённый интеграл не зависит от того, какая первообразная подынтегральной функции взята при его вычислении. Пусть F(x) и Ф(х) – произвольные первообразные подынтегральной функции. Так как это первообразные одной и той же функции, то они отличаются на постоянное слагаемое: Ф(х) = F(x) + C. Поэтому

Тем самым установлено, что на отрезке [a, b] приращения всех первообразных функции f(x) совпадают.

Таким образом, для вычисления определённого интеграла необходимо найти любую первообразную подынтегральной функции, т. е. сначала следует найти неопределённый интеграл. Постоянная С из последующих вычислений исключается. Затем применяется формула Ньютона-Лейбница: в первообразную функцию подставляется значение верхнего предела b, далее - значение нижнего предела a и вычисляется разность F(b) - F(a). Полученное число и будет определённым интегралом.

Полную информацию смотрите в файле. 

Содержимое разработки

Понятие определённого интеграла

Определённым интегралом от непрерывной функции f(x) на конечном отрезке [a, b] (где ) называется приращение какой-нибудь её первообразной на этом отрезке. (Вообще, понимание заметно облегчится, если повторить тему неопределённого интеграла) При этом употребляется запись

Как видно на графиках внизу (приращение первообразной функции обозначено ), определённый интеграл может быть как положительным, так и отрицательным числом (Вычисляется как разность между значением первообразной в верхнем пределе и её же значением в нижнем пределе, т. е. как F(b) - F(a)).

Числа a и b называются соответственно нижним и верхним пределами интегрирования, а отрезок [a, b] – отрезком интегрирования.

Таким образом, если F(x) – какая-нибудь первообразная функция для f(x), то, согласно определению,

Равенство (38) называется формулой Ньютона-Лейбница. Разность F(b) – F(a) кратко записывают так:

Поэтому формулу Ньютона-Лейбница будем записывать и так:

Докажем, что определённый интеграл не зависит от того, какая первообразная подынтегральной функции взята при его вычислении. Пусть F(x) и Ф(х) – произвольные первообразные подынтегральной функции. Так как это первообразные одной и той же функции, то они отличаются на постоянное слагаемое: Ф(х) = F(x) + C. Поэтому

Тем самым установлено, что на отрезке [a, b] приращения всех первообразных функции f(x) совпадают.

Таким образом, для вычисления определённого интеграла необходимо найти любую первообразную подынтегральной функции, т.е. сначала следует найти неопределённый интеграл. Постоянная С из последующих вычислений исключается. Затем применяется формула Ньютона-Лейбница: в первообразную функцию подставляется значение верхнего предела b, далее - значение нижнего предела a и вычисляется разность F(b) - F(a). Полученное число и будет определённым интегралом..

При a = b по определению принимается

Для того чтобы потренироваться в нахождении определённых интегралов, потребуется таблица основных неопределённых интегралов и пособие "Действия со степенями и корнями".

Примеры:

Задание 1. Вычислить неопределенный интеграл

Решение. Для решения данного интеграла не нужно использовать свойства неопределенных интегралов, достаточно формулы интеграла степенной функции:

В нашем случае , тогда искомый интеграл равен:

Ответ.

Задание 2. Вычислить неопределенный интеграл

Решение. Преобразуем подынтегральное выражение. Для этого вынесем из знаменателя за знак интеграла

далее, используя таблицу интегралов (Формула №11), получим

Ответ.

Задание 3. Вычислить неопределенный интеграл

Решение. Распишем подынтегральную сумму, используя тригонометрические функции (определение котангенса)

Внесем под знак дифференциала:

Полученный интеграл можно вычислить, используя табличный интеграл

В результате получим

Ответ.

Задание 4. Найти неопределенный интеграл

Решение. Введем замену и полученный интеграл находим как интеграл от степенной функции:

Сделаем обратную замену

Ответ.

Задание 5. Найти неопределенный интеграл

Решение. Воспользуемся методом интегрирования по частям. Для этого положим

Подставим это в формулу для интегрирования по частям, затем воспользуемся формулой интеграла косинуса из таблицы интегралов

Ответ.



-80%
Курсы повышения квалификации

Современные педагогические технологии в образовательном процессе

Продолжительность 72 часа
Документ: Удостоверение о повышении квалификации
4000 руб.
800 руб.
Подробнее
Скачать разработку
Сохранить у себя:
Конспект урока по математике по теме «Понятие определённого интеграла» (74.29 КB)

Комментарии 0

Чтобы добавить комментарий зарегистрируйтесь или на сайт