
Кодирование информации
Информация и информационные процессы
Для обмена информацией с другими людьми человек использует естественные языки. Наряду с естественными языками были разработаны формальные языки для профессионального применения их в какой-либо сфере. Представление информации с помощью какого-либо языка часто называют кодированием.
Код — набор символов (условных обозначений) для представления информации.
Код — система условных знаков (символов) для передачи, обработки и хранения информации(со общения).
Кодирование — процесс представления информации (сообщения) в виде кода.
Все множество символов, используемых для кодирования, называется алфавитом кодирования . Например, в памяти компьютера любая информация кодируется с помощью двоичного алфавита, содержащего всего два символа: 0 и1.
Декодирование - процесс обратного преобразования кода к форме исходной символьной системы, т.е. получение исходного сообщения. Например: перевод с азбуки Морзе в письменный текст на русском языке.
В более широком смысле декодирование — это процесс восстановления содержания закодированного сообщения. При таком подходе процесс записи текста с помощью русского алфавита можно рассматривать в качестве кодирования, а его чтение — это декодирование.

Для кодирования одной и той же информации могут быть использованы разные способы; их выбор зависит от ряда обстоятельств: цели кодирования, условий, имеющихся средств .
Если надо записать текст в темпе речи — используем стенографию; если надо передать текст за границу — используем английский алфавит; если надо представить текст в виде, понятном для грамотного русского человека, — записываем его по правилам грамматики русского языка.
« Здравствуй, Саша! »
« Zdravstvu y , Sa s ha! »

Выбор способа кодирования информации может быть связан с предполагаемым способом ее обработки .
Покажем это на примере представления чисел — количественной информации. Используя русский алфавит, можно записать число " тридцать пять ". Используя же алфавит арабской десятичной системы счисления, пишем « 35 ». Второй способ не только короче первого, но и удобнее для выполнения вычислений. Какая запись удобнее для выполнения расчетов: " тридцать пять умножить на сто двадцать семь " или " 35 х 127 "? Очевидно — вторая.

В некоторых случаях возникает потребность засекречивания текста сообщения или документа, для того чтобы его не смогли прочитать те, кому не положено. Это называется защитой от несанкционированного доступа .
В таком случае секретный текст шифруется .
В давние времена шифрование называлось тайнописью .
Шифрование представляет собой процесс превращения открытого текста в зашифрованный, а дешифрование —процесс обратного преобразования, при котором восстанавливается исходный текст.
Шифрование — это тоже кодирование, но с засекреченным методом, известным только источнику и адресату.
Методами шифрования занимается наука под названием криптография .

Оптический телеграф Шаппа
В 1792 году во Франции Клод Шапп создал систему передачи визуальной информации, которая получила название « Оптический телеграф ».
В простейшем виде это была цепь типовых строений, с расположенными на кровле шестами с подвижными поперечинами, которая создавалась в пределах видимости одно от другого. Шесты с подвижными поперечинами — семафоры — управлялись при помощи тросов специальными операторами изнутри строений.
Шапп создал специальную таблицу кодов, где каждой букве алфавита соответствовала определенная фигура, образуемая Семафором , в зависимости от положений поперечных брусьев относительно опорного шеста.
Система Шаппа позволяла передавать сообщения на скорости два слова в минуту и быстро распространилась в Европе. В Швеции цепь станций оптического телеграфа действовала до 1880 года.

Первым техническим средством передачи информации на расстояние стал телеграф , изобретенный в1837 году американцем Сэмюэлем Морзе.
Телеграфное сообщение — это последовательность электрических сигналов, передаваемая от одного телеграфного аппарата по проводам к другому телеграфному аппарату.
Изобретатель Сэмюель Морзе изобрел удивительный код(Азбука Морзе, код Морзе, «Морзянка»), который служит человечеству до сих пор. Информация кодируется тремя «буквами»: длинный сигнал (тире), короткий сигнал (точка) и отсутствие сигнала (пауза) для разделения букв. Таким образом, кодирование сводится к использованию набора символов, расположенных в строго определенном порядке.
Самым знаменитым телеграфным сообщением является сигнал бедствия " SOS " (Save Our Souls - спасите наши души). Вот как он выглядит: « • • • – – – • • • »

A
Б
• −
− • • •
И
В
• − −
Й
Г
• •
− − •
• − − −
К
Д
P
С
− • •
• − •
Л
− • −
Е
• • •
•
• − • •
Ш
М
Т
Ж
− −
H
З
− − − −
• • • −
У
Щ
−
• • −
− − • −
− − • •
− •
Ъ
Ф
О
• − − • − •
П
Х
• • − •
− − −
Ь
• − − •
− • • −
• • • •
Ц
Ы
− • − •
Э
− • − −
Ч
• • − • •
− − − •
Ю
• • − −
Я
• − • −

1
• − − − −
2
• • − − −
3
9
4
• • • − −
0
− − − − •
− − − − −
• • • • −
Точка
5
6
• • • • • •
Запятая
• • • • •
• • • •
• − • − • −
/
7
− • • − •
?
− − • • •
8
• • − − • •
− − − • •
!
− − • • − −
@
• − − • − •

− • − − • • • − − • • −
Характерной особенностью азбуки Морзе является переменная длина кода разных букв , поэтому код Морзе называют неравномерным кодом .
Буквы, которые встречаются в тексте чаще, имеют более короткий код, чем редкие буквы. Это сделано для того, чтобы сократить длину всего сообщения. Но из-за переменной длины кода букв возникает проблема отделения букв друг от друга в тексте. Поэтому для разделения приходится использовать паузу (пропуск). Следовательно, телеграфный алфавит Морзе является троичным, т.к. в нем используются три знака: точка, тире, пропуск.
Первый беспроводной телеграф (радиоприемник)
7 мая 1895 года российский ученый Александр Степанович Попов на заседании Русского Физико-Химического Общества продемонстрировал прибор, названный им "грозоотметчик", который был предназначен для регистрации электромагнитных волн.
Этот прибор считается первым в мире аппаратом беспроводной телеграфии , радиоприемником . В 1897 году при помощи аппаратов беспроводной телеграфии Попов осуществил прием и передачу сообщений между берегом и военным судном.
В 1899 году Попов сконструировал модернизированный вариант приемника электромагнитных волн, где прием сигналов (азбукой Морзе) осуществлялся на головные телефоны оператора.
В 1900 году благодаря радиостанциям, построенным на острове Гогланд и на российской военно-морской базе в Котке под руководством Попова, были успешно осуществлены аварийно-спасательные работы на борту военного корабля "Генерал-адмирал Апраксин", севшего на мель у острова Гогланд. В результате обмена сообщениями, переданным методом беспроводной телеграфии, экипажу российского ледокола Ермак была своевременно и точно передана информация о финских рыбаках, находящихся на оторванной льдине.
Равномерный телеграфный код был изобретен французом Жаном Морисом Бодо в конце XIX века. В нем использовалось всего два разных вида сигналов. Не важно, как их назвать: точка и тире, плюс и минус, ноль и единица. Это два отличающихся друг от друга электрических сигнала. Длина кода всех символов одинаковая и равна пяти. В таком случае не возникает проблемы отделения букв друг от друга: каждая пятерка сигналов — это знак текста. Поэтому пропуск не нужен.
Код называется равномерным, если длина кода всех символов равна.
Код Бодо — это первый в истории техники способ двоичного кодирования , информации. Благодаря этой идее удалось создать буквопечатающий телеграфный аппарат, имеющий вид пишущей машинки. Нажатие на клавишу с определенной буквой вырабатывает соответствующий пятиимпульсный сигнал, который передаетсяпо линии связи.
В честь Бодо была названа единица скорости передачи информации — бод.
В современных компьютерах для кодирования текста также применяется равномерный двоичный код.
Telex
Это интересно:
Отель, не имеющий телекса, не может иметь рейтинг "пять звезд".

Двоичное кодирование в компьютере
Вся информация, которую обрабатывает компьютер должна быть представлена двоичным кодом с помощью двух цифр: 0 и 1 . Эти два символа принято называть двоичными цифрами или битами .
С помощью двух цифр 0 и 1 можно закодировать любое сообщение. Это явилось причиной того, что в компьютере обязательно должно быть организованно два важных процесса: кодирование и декодирование.
Кодирование – преобразование входной информации в форму, воспринимаемую компьютером, т.е. двоичный код.
Декодирование – преобразование данных из двоичного кода в форму, понятную человеку.
Привет! 1001011

С точки зрения технической реализации использование двоичной системы счисления для кодирования информации оказалось намного более простым, чем применение других способов. Действительно, удобно кодировать информацию в виде последовательности нулей и единиц, если представить эти значения как два возможных устойчивых состояния электронного элемента:
0 – отсутствие электрического сигнала;
1 – наличие электрического сигнала.
Эти состояния легко различать. Недостаток двоичного кодирования – длинные коды . Но в технике легче иметь дело с большим количеством простых элементов, чем с небольшим числом сложных.
Способы кодирования и декодирования информации в компьютере, в первую очередь, зависит от вида информации, а именно, что должно кодироваться: числа, текст, графические изображения или звук.

- Что такое код?
- Приведите примеры кодирования информации, используемой в физике, биологии, географии, математике?
- Придумайте свои способы кодирования русских букв.
- Закодируйте сообщение «информатика» с помощью кода Морзе.

Представление (кодирование) чисел
Информация и информационные процессы

Система счисления

СИСТЕМЫ СЧИСЛЕНИЯ
В позиционных системах счисления величина , обозначаемая цифрой в записи числа, зависит от её положения в числе ( позиции ).
211
В непозиционных системах счисления величина, которую обозначает цифра, не зависит от положения в числе.
XXI

Каноническим примером фактически непозиционной системы счисления является римская , в которой в качестве цифр используются латинские буквы:
I обозначает 1, V - 5, X - 10, L - 50, C - 100, D - 500, M -1000.
Натуральные числа записываются при помощи повторения этих цифр.
Например, II = 1 + 1 = 2, здесь символ I обозначает 1 независимо от места в числе.
Для правильной записи больших чисел римскими цифрами необходимо сначала записать число тысяч, затем сотен, затем десятков и, наконец, единиц.
Пример: число 1988. Одна тысяча M, девять сотен CM, восемьдесят LXXX, восемь VIII. Запишем их вместе: MCMLXXXVIII.
MCMLXXXVIII = 1000+(1000-100)+( 50+ 10 +10+10 )+5+1+1+1 = 19 8 8
Для изображения чисел в непозиционной системе счисления нельзя ограничится конечным набором цифр. Кроме того, выполнение арифметических действий в них крайне неудобно.

В позиционных системах счисления величина, обозначаемая цифрой в записи числа, зависит от её положения в числе (позиции).
Количество используемых цифр называется основанием системы счисления .
Например, 11 – это одиннадцать, а не два: 1 + 1 = 2 (сравните с римской системой счисления). Здесь символ 1 имеет различное значение в зависимости от позиции в числе.

Первые позиционные системы счисления
пятеричная
Некоторые племена на филиппинских островах используют ее и в наши дни, а в цивилизованных странах ее реликт, как считают специалисты, сохранился только в виде школьной пятибалльной шкалы оценок.

Двенадцатеричная система счисления
Следующей после пятеричной возникла двенадцатеричная система счисления. Возникла она в древнем Шумере. Некоторые учёные полагают, что такая система возникала у них из подсчёта фаланг на руке большим пальцем.
Широкое распространение получила двенадцатеричная система счисления в XIX веке. На ее широкое использование в прошлом явно указывают названия числительных во многих языках, а также сохранившиеся в ряде стран способы отсчета времени, денег и соотношения между некоторыми единицами измерения. Год состоит из 12 месяцев, а половина суток состоит из 12 часов.
Элементом двенадцатеричной системы в современности может служить счёт дюжинами. Первые три степени числа 12 имеют собственные названия: 1 дюжина = 12 штук; 1 гросс = 12 дюжин = 144 штуки; 1 масса = 12 гроссов = 144 дюжины = 1728 штук.
Английский фунт состоит из 12 шиллингов.

Шестидесятеричная система счисления
Следующая позиционная система счисления была придумана еще в Древнем Вавилоне, причем вавилонская нумерация была шестидесятеричная , т.е. в ней использовалось шестьдесят цифр!
В более позднее время использовалась арабами, а также древними и средневековыми астрономами. Шестидесятеричная система счисления, как считают исследователи, являет собой синтез уже вышеупомянутых пятеричной и двенадцатеричной систем.

Какие позиционные системы счисления используются сейчас?
В настоящее время наиболее распространены десятичная , двоичная , восьмеричная и шестнадцатеричная системы счисления.
Двоичная, восьмеричная (в настоящее время вытесняется шестнадцатеричной) и шестнадцатеричная система часто используется в областях, связанных с цифровыми устройствами, программировании и вообще компьютерной документации.
Современные компьютерные системы оперируют информацией представленной в цифровой форме. Числовые данные преобразуются в двоичную систему счисления .

Десятичная система счисления — позиционная система счисления по основанию 10.
Предполагается, что основание 10 связано с количеством пальцев рук у человека.
Наиболее распространённая система счисления в мире.
Для записи чисел используются символы 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , называемые арабскими цифрами.

*
0
**
1
***
*** *** *** *
2
3
*** *
10
*** *** *** **
11
*** *** *** ***
*** **
4
5
***** ***** ***** * ****
***** ***** ***
12
*** ***
6
20
…
13
*** *** *
***** ***** ****
14
…
***** ***** *****
*** *** **
7
***** ***** ***** *
***
*** ***
15
8
***** ***** ***** * *
16
9
***** ***** ***** * **
17
18
***** ***** ***** * ***
19

Двоичная система счисления — позиционная система счисления с основанием 2. Используются цифры 0 и 1.
Двоичная система используется в цифровых устройствах, поскольку является наиболее простой и удовлетворяет требованиям:
- Чем меньше значений существует в системе, тем проще изготовить отдельные элементы.
- Чем меньше количество состояний у элемента, тем выше помехоустойчивость и тем быстрее он может работать.
- Простота создания таблиц сложения и умножения — основных действий над числами

Алфавит десятичной, двоичной, восьмеричной и шестнадцатеричной систем счисления
Система счисления
Основание
Десятичная
Алфавит цифр
10
Двоичная
2
0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Восьмеричная
0, 1
8
Шестнадцатеричная
16
0, 1, 2, 3, 4, 5, 6, 7
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Соответствие десятичной, двоичной, восьмеричной и шестнадцатеричной систем счисления
p=10
p=2
0
0
p=8
1
0
1
2
p=16
10
3
0
1
4
11
2
1
100
5
2
3
101
6
4
3
110
4
7
5
8
6
111
5
1000
7
6
9
10
1001
10
7
1010
11
11
8
12
12
1011
9
1100
A
13
13
14
14
1101
B
1110
15
15
C
16
16
1111
D
10000
17
E
20
F
10
Количество используемых цифр называется основанием системы счисления .
При одновременной работе с несколькими системами счисления для их различения основание системы обычно указывается в виде нижнего индекса, который записывается в десятичной системе:
123 10 — это число 123 в десятичной системе счисления;
1111011 2 — то же число, но в двоичной системе.
Двоичное число 1111011 можно расписать в виде: 1111011 2 = 1*2 6 + 1*2 5 + 1*2 4 + 1*2 3 + 0*2 2 + 1*2 1 + 1*2 0 .

Перевод чисел из одной системы счисления в другую
Чтобы перевести число из позиционной системы счисления с основанием p в десятичную , надо представить это число в виде суммы степеней p и произвести указанные вычисления в десятичной системе счисления.
Например, переведем число 1011 2 в десятичную систему счисления. Для этого представим это число в виде степеней двойки и произведем вычисления в десятичной системе счисления.
1011 2 = 1*2 3 + 0*2 2 + 1*2 1 + 1*2 0 = 1*8 + 0*4 + 1*2 + 1*1 = 8 + 0 + 2 + 1 = 11 10
Рассмотрим еще один пример. Переведем число 52,74 8 в десятичную систему счисления.
52,74 8 = 5*8 1 + 2*8 0 + 3*8 -1 + 4*8 -2 = 5*8 + 2*1 + 7*1/8 +4*1/49 = 40 + 2 + 0,875 + 0,0625 = 42,9375 10

Перевод чисел из одной системы счисления в другую
Перевод из десятичной системы счисления в систему счисления с основанием p осуществляется последовательным делением десятичного числа и его десятичных частных на p , а затем выписыванием последнего частного и остатков в обратном порядке.
Переведем десятичное число 20 10 в двоичную систем счисления (основание системы счисления p=2). В итоге получили 20 10 = 10100 2 .

в компьютере в двоичной системе счисления
системы счисления

- Что такое система счисления?
- Какие два вида систем счисления вы знаете?
- Что такое основание системы счисления? Что такое алфавит системы счисления? Примеры.
- В какой системе счисления хранятся и обрабатываются числа в памяти компьютера?

Какое количество компьютеров вы видите? Ответ дайте в двоичной, восьмеричной и десятичной системах счисления.
?
Ответ:
10 2 2 8 2 10
Двоичная Восьмеричная Десятичная

Какое количество компьютеров вы видите? Ответ дайте в двоичной, восьмеричной и десятичной системах счисления.
?
Ответ:
11 2 3 8 3 10
Двоичная Восьмеричная Десятичная

Какое количество компьютеров вы видите? Ответ дайте в двоичной, восьмеричной и десятичной системах счисления.
?
Ответ:
101 2 5 8 5 10
Двоичная Восьмеричная Десятичная

Какое количество компьютеров вы видите? Ответ дайте в двоичной, восьмеричной и десятичной системах счисления.
?
Ответ:
111 2 7 8 7 10
Двоичная Восьмеричная Десятичная

Какое количество компьютеров вы видите? Ответ дайте в двоичной, восьмеричной и десятичной системах счисления.
?
Ответ:
1000 2 10 8 8 10
Двоичная Восьмеричная Десятичная

Какое количество компьютеров вы видите? Ответ дайте в двоичной, восьмеричной и десятичной системах счисления.
?
Ответ:
1001 2 11 8 9 10
Двоичная Восьмеричная Десятичная

Прочитайте стихотворение. Переведите встречающиеся в нем числительные из двоичной системы счисления в десятичную.
Необыкновенная девчонка
Ей было тысяча сто лет,
Она в 101-ый класс ходила,
В портфеле по сто книг носила –
Все это правда, а не бред.
Когда, пыля десятком ног,
Она шагала по дороге,
За ней всегда бежал щенок
С одним хвостом, зато стоногий.
Она ловила каждый звук
Своими десятью ушами,
И десять загорелых рук
Портфель и поводок держали.
И десять темно-синих глаз
Рассматривали мир привычно,…
Но станет все совсем обычным,
Когда поймете наш рассказ.

- У меня 100 братьев. Младшему 1000 лет, а старшему 1111 лет. Старший учится в 1001 классе. Может ли быть такое?
- Когда дважды два равно 100?

- Запишите число 1945 в римской системе счисления.
- Запишите в развернутом виде числа: 2007 10 , 234 8 , 10110 2 .
- Чему будут равны числа 174 8 , 2 E 16 , 101,101 2 в десятичной системе счисления?
- Как будет записываться число 14 10 в двоичной системе счисления? 100 10 в восьмеричной?

Двоичное кодирование текстовой информации
Информация и информационные процессы

Двоичное кодирование в компьютере
Вся информация, которую обрабатывает компьютер должна быть представлена двоичным кодом с помощью двух цифр: 0 и 1 . Эти два символа принято называть двоичными цифрами или битами .
С помощью двух цифр 0 и 1 можно закодировать любое сообщение. Это явилось причиной того, что в компьютере обязательно должно быть организованно два важных процесса: кодирование и декодирование.
Кодирование – преобразование входной информации в форму, воспринимаемую компьютером, т.е. двоичный код.
Декодирование – преобразование данных из двоичного кода в форму, понятную человеку.
Привет! 1001011

Двоичное кодирование текстовой информации

1 символ – 1 байт (8 бит)
одного символа один байт
2 8 =256

Двоичное кодирование текстовой информации
Кодирование заключается в том, что каждому символу ставиться в соответствие уникальный двоичный код от 00000000 до 11111111 (или десятичный код от 0 до 255).

Таблица, в которой всем символам компьютерного алфавита поставлены в соответствие порядковые номера (коды), называется таблицей кодировки .
Для разных типов ЭВМ используются различные кодировки. С распространением IBM PC международным стандартом стала таблица кодировки ASCII ( A merican S tandart C ode for I nformation I nterchange ) – Американский стандартный код для информационного обмена.

Таблица кодировки ASCII
Стандартной в этой таблице является только первая половина, т.е. символы с номерами от 0 (00000000) до 127 (0111111). Сюда входят буква латинского алфавита, цифры, знаки препинания, скобки и некоторые другие символы.
Остальные 128 кодов используются в разных вариантах. В русских кодировках размещаются символы русского алфавита.
В настоящее время существует 5 разных кодовых таблиц для русских букв (КОИ8, СР1251 , СР866, Mac, ISO ).
В настоящее время получил широкое распространение новый международный стандарт Unicode , который отводит на каждый символ два байта. С его помощью можно закодировать 65536 (2 16 = 65536 ) различных символов.


- Таблица расширенного кода ASCII Кодировка Windows-1251 (CP1251)

Сегодня очень многие люди для подготовки писем, документов, статей, книг и пр. используют компьютерные текстовые редакторы . Компьютерные редакторы, в основном, работают с алфавитом размером 256 символов .
В этом случае легко подсчитать объем информации в тексте. Если 1 символ алфавита несет 1 байт информации , то надо просто сосчитать количество символов; полученное число даст информационный объем текста в байтах.
Пусть небольшая книжка, сделанная с помощью компьютера, содержит 150 страниц; на каждой странице — 40 строк, в каждой строке — 60 символов. Значит страница содержит 40x60=2400 байт информации. Объем всей информации в книге: 2400 х 150 = 360 000 байт.

Цифры кодируются по стандарту ASCII в двух случаях – при вводе-выводе и когда они встречаются в тексте. Если цифры участвуют в вычислениях, то осуществляется их преобразование в другой двоичных код (см. урок «представление чисел в компьютере»).
Возьмем число 57 .
При использовании в тексте каждая цифра будет представлена своим кодом в соответствии с таблицей ASCII. В двоичной системе это – 0011010100110111 .
При использовании в вычислениях , код этого числа будет получен по правилам перевода в двоичную систему и получим – 00111001 .

- В чем заключается кодирование текстовой информации в компьютере?
- Закодируйте с помощью ASCII -кода свою фамилию, имя, номер класса.
- Какое сообщение закодировано в кодировке Windows-1251: 0011010100100000111000011110000011101011111010111110111011100010
- Считая, что каждый символ кодируется одним байтом, оцените информационный объем следующего предложения из пушкинского четверостишия: Певец-Давид был ростом мал, Но повалил же Голиафа!

Двоичное кодирование графической информации
Информация и информационные процессы

Аналоговая и дискретная форма представления информации
Человек способен воспринимать и хранить информацию в форме образов (зрительных, звуковых, осязательных, вкусовых и обонятельных). Зрительные образы могут быть сохранены в виде изображений (рисунков, фотографий и так далее), а звуковые — зафиксированы на пластинках, магнитных лентах, лазерных дисках и так далее.
Информация, в том числе графическая и звуковая, может быть представлена в аналоговой или дискретной форме. При аналоговом представлении физическая величина принимает бесконечное множество значений, причем ее значения изменяются непрерывно. При дискретном представлении физическая величина принимает конечное множество значений, причем ее величина изменяется скачкообразно.

Аналоговая и дискретная форма представления информации
Приведем пример аналогового и дискретного представления информации.
Положение тела на наклонной плоскости и на лестнице задается значениями координат X и У.
При движении тела по наклонной плоскости его координаты могут принимать бесконечное множество непрерывно изменяющихся значений из определенного диапазона, а при движении по лестнице — только определенный набор значений , причем меняющихся скачкообразно.

Примером аналогового представления графической информации может служить, например, живописное полотно, цвет которого изменяется непрерывно, а дискретного — изображение, напечатанное с помощью струйного принтера и состоящее из отдельных точек разного цвета. Примером аналогового хранения звуковой информации является виниловая пластинка (звуковая дорожка изменяет свою форму непрерывно), а дискретного — аудиокомпакт-диск (звуковая дорожка которого содержит участки с различной отражающей способностью).
Преобразование графической и звуковой информации из аналоговой формы в дискретную производится путем дискретизации , то есть разбиения непрерывного графического изображения и непрерывного (аналогового) звукового сигнала на отдельные элементы . В процессе дискретизации производится кодирование, то есть присвоение каждому элементу конкретного значения в форме кода.
Дискретизация – это преобразование непрерывных изображений и звука в набор дискретных значений в форме кодов.


Кодирование растровых изображений
Растровое изображение представляет собой совокупность точек (пикселей) разных цветов. Пиксель - минимальный участок изображения, цвет которого можно задать независимым образом.
В процессе кодирования изображения производится его пространственная дискретизация.
Пространственную дискретизацию изображения можно сравнить с построением изображения из мозаики (большого количества маленьких разноцветных стекол). Изображение разбивается на отдельные маленькие фрагменты (точки), причем каждому фрагменту присваивается значение его цвета, то есть код цвета (красный, зеленый, синий и так далее).
Качество изображения зависит от количества точек (чем меньше размер точки и, соответственно, больше их количество, тем лучше качество) и количества используемых цветов (чем больше цветов, тем качественнее кодируется изображение).

Для представления цвета в виде числового кода используются две обратных друг другу цветовые модели: RGB или CMYK.
- Модель RGB используется в телевизорах, мониторах, проекторах, сканерах, цифровых фотоаппаратах… Основные цвета в этой модели: красный ( R ed ), зеленый ( G reen ), синий ( B lue ).
- Цветовая модель CMYK используется в полиграфии при формировании изображений, предназначенных для печати на бумаге.

Цветовая модель RGB
Цветные изображения могут иметь различную глубину цвета, которая задается количеством битов, используемых для кодирования цвета точки.
Если кодировать цвет одной точки изображения тремя битами (по одному биту на каждый цвет RGB), то мы получим все восемь различных цветов.

На практике же, для сохранения информации о цвете каждой точки цветного изображения в модели RGB обычно отводится 3 байта (т.е. 24 бита) - по 1 байту (т.е. по 8 бит) под значение цвета каждой составляющей.
Таким образом, каждая RGB-составляющая может принимать значение в диапазоне от 0 до 255 (всего 2 8 =256 значений), а каждая точка изображения, при такой системе кодирования может быть окрашена в один из 16 777 216 цветов.
Такой набор цветов принято называть True Color (правдивые цвета), потому что человеческий глаз все равно не в состоянии различить большего разнообразия.

Для того чтобы на экране монитора формировалось изображение, информация о каждой точке (код цвета точки) должна храниться в видеопамяти компьютера.
Рассчитаем необходимый объем видеопамяти для одного из графических режимов.
В современных компьютерах разрешение экрана обычно составляет 1280х1024 точек. Т.е. всего 1280 * 1024 = 1310720 точек.
При глубине цвета 32 бита на точку необходимый объем видеопамяти: 32 *1310720 = 41943040 бит = 5242880 байт = 5120 Кб = 5 Мб.

Кодирование векторных изображений
Векторное изображение представляет собой совокупность графических примитивов (точка, отрезок, эллипс…). Каждый примитив описывается математическими формулами. Кодирование зависти от прикладной среды.
Достоинством векторной графики является то, что файлы, хранящие векторные графические изображения, имеют сравнительно небольшой объем.
Важно также, что векторные графические изображения могут быть увеличены или уменьшены без потери качества.

Форматы графических файлов определяют способ хранения информации в файле (растровый или векторный), а также форму хранения информации (используемый алгоритм сжатия ).
Наиболее популярные растровые форматы:
- BMP
- GIF
- JPEG
- TIFF
- PNG
- Bit MaP image (BMP) — универсальный формат растровых графических файлов, используется в операционной системе Windows. Этот формат поддерживается многими графическими редакторами, в том числе редактором Paint. Рекомендуется для хранения и обмена данными с другими приложениями.
- Tagged Image File Format (TIFF) — формат растровых графических файлов, поддерживается всеми основными графическими редакторами и компьютерными платформами. Включает в себя алгоритм сжатия без потерь информации. Используется для обмена документами между различными программами. Рекомендуется для использования при работе с издательскими системами.
- Graphics Interchange Format (GIF) — формат растровых графических файлов, поддерживается приложениями для различных операционных систем. Включает алгоритм сжатия без потерь информации, позволяющий уменьшить объем файла в несколько раз. Рекомендуется для хранения изображений, создаваемых программным путем (диаграмм, графиков и так далее) и рисунков (типа аппликации) с ограниченным количеством цветов (до 256). Используется для размещения графических изображений на Web-страницах в Интернете.
- Portable Network Graphic (PNG) — формат растровых графических файлов, аналогичный формату GIF. Рекомендуется для размещения графических изображений на Web-страницах в Интернете.
- Joint Photographic Expert Group (JPEG) — формат растровых графических файлов, который реализует эффективный алгоритм сжатия (метод JPEG) для отсканированных фотографий и иллюстраций. Алгоритм сжатия позволяет уменьшить объем файла в десятки раз, однако приводит к необратимой потере части информации. Поддерживается приложениями для различных операционных систем. Используется для размещения графических изображений на Web-страницах в Интернете.

- Какие виды компьютерных изображений вы знаете?
- Какое максимальное количество цветов может быть использовано в изображении, если на каждую точку отводится 3 бита?
- Что вы знаете о цветовой модели RGB ?
- Рассчитайте необходимый объем видеопамяти для графического режима: разрешение экрана 800х600, качество цветопередачи 16 бит.

Двоичное кодирование звука. Представление видеоинформации
Информация и информационные процессы

Использование компьютера для обработки звука началось позднее, нежели чисел, текстов и графики.
Звук – волна с непрерывно изменяющейся амплитудой и частотой. Чем больше амплитуда, тем он громче для человека, чем больше частота, тем выше тон.
Звуковые сигналы в окружающем нас мире необычайно разнообразны. Сложные непрерывные сигналы можно с достаточной точностью представлять в виде суммы некоторого числа простейших синусоидальных колебаний. Причем каждое слагаемое, то есть каждая синусоида, может быть точно задана некоторым набором числовых параметров – амплитуды, фазы и частоты, которые можно рассматривать как код звука в некоторый момент времени.

В процессе кодирования звукового сигнала производится его временная дискретизация – непрерывная волна разбивается на отдельные маленькие временные участки и для каждого такого участка устанавливается определенная величина амплитуды.
Таким образом непрерывная зависимость амплитуды сигнала от времени заменяется на дискретную последовательность уровней громкости.

Качество двоичного кодирования звука определяется глубиной кодирования и частотой дискретизации.
Частота дискретизации – количество измерений уровня сигнала в единицу времени.
Количество уровней громкости определяет глубину кодирования. Современные звуковые карты обеспечивают 16-битную глубину кодирования звука. При этом количество уровней громкости равно N = 2 I = 2 16 = 65536.

В последнее время компьютер все чаще используется для работы с видеоинформацией. Простейшей такой работой является просмотр кинофильмов и видеоклипов. Следует четко представлять, что обработка видеоинформации требует очень высокого быстродействия компьютерной системы.
Что представляет собой фильм с точки зрения информатики? Прежде всего, это сочетание звуковой и графической информации . Кроме того, для создания на экране эффекта движения используется дискретная по своей сути технология быстрой смены статических картинок. Исследования показали, что если за одну секунду сменяется более 10-12 кадров, то человеческий глаз воспринимает изменения на них как непрерывные.

Казалось бы, если проблемы кодирования статической графики и звука решены, то сохранить видеоизображение уже не составит труда.
Но это только на первый взгляд, поскольку при использовании традиционных методов сохранения информации электронная версия фильма получится слишком большой.
Достаточно очевидное усовершенствование состоит в том, чтобы первый кадр запомнить целиком (в литературе его принято называть ключевым), а в следующих сохранять лишь отличия от начального кадра (разностные кадры).

Некоторые форматы видеофайлов
Существует множество различных форматов представления видеоданных.
- В среде Windows, например, уже более 10 лет применяется формат Video for Windows, базирующийся на универсальных файлах с расширением AVI (Audio Video Interleave – чередование аудио и видео).
- Более универсальным является мультимедийный формат Quick Time, первоначально возникший на компьютерах Apple.
- Все большее распространение в последнее время получают системы сжатия видеоизображений, допускающие некоторые незаметные для глаза искажения изображения с целью повышения степени сжатия. Наиболее известным стандартом подобного класса служит MPEG (Motion Picture Expert Group). Методы, применяемые в MPEG, непросты для понимания и опираются на достаточно сложную математику.
- Большее распространение получила технология под названием DivX (Digital Video Express). Благодаря DivX удалось достигнуть степени сжатия, позволившей вмесить качественную запись полнометражного фильма на один компакт-диск – сжать 4,7 Гб DVD-фильма до 650 Мб.

Мультимедиа (multimedia, от англ. multi - много и media - носитель, среда) - совокупность компьютерных технологий, одновременно использующих несколько информационных сред: текст, графику, видео, фотографию, анимацию, звуковые эффекты, высококачественное звуковое сопровождение.
Под словом «мультимедиа» понимают воздействие на пользователя по нескольким информационным каналам одновременно. Можно еще сказать так: мультимедиа – это объединение изображения на экране компьютера (в том числе и графической анимации и видеокадров) с текстом и звуковым сопровождением .
Наибольшее распространение системы мультимедиа получили в области обучения, рекламы, развлечений.