Меню
Разработки
Разработки  /  Математика  /  Презентации  /  11 класс  /  Геометрическая прогрессия

Геометрическая прогрессия

Знакомство с геометрическими прогрессиями и их свойставми.

Умение решать геометрических прогрессий

18.09.2017

Содержимое разработки

 ГЕОМЕТРИЧЕСКАЯ  И  АРИФМЕТИЧЕСКАЯ ПРОГРЕССИЯ

ГЕОМЕТРИЧЕСКАЯ И АРИФМЕТИЧЕСКАЯ ПРОГРЕССИЯ

Числовая последовательность, каждый член которой, начиная со второго, равен предыдущему, сложенному с постоянным для этой последовательности числом d , называется арифметической прогрессией . Число d называется разностью прогрессии. Любой член арифметической прогрессии вычисляется по формуле: a n  = a 1 + d ( n – 1 )

Числовая последовательность, каждый член которой, начиная со второго, равен предыдущему, сложенному с постоянным для этой последовательности числом d , называется арифметической прогрессией . Число d называется разностью прогрессии. Любой член арифметической прогрессии вычисляется по формуле:

a n = a 1 + d ( n – 1 )

Сумма n первых членов арифметической прогрессии вычисляется как:
  • Сумма n первых членов арифметической прогрессии вычисляется как:
П р и м е р . Найти сумму первых ста нечётных чисел. Р е ш е н и е
  • П р и м е р . Найти сумму первых ста нечётных чисел.
  • Р е ш е н и е
Числовая последовательность, каждый член которой, начиная со второго, равен предыдущему, умноженному на постоянное для этой последовательности число q , называется геометрической прогрессией. Число q называется знаменателем прогрессии. Любой член геометрической прогрессии вычисляется по формуле: Сумма n первых членов геометрической прогрессии вычисляется как:
  • Числовая последовательность, каждый член которой, начиная со второго, равен предыдущему, умноженному на постоянное для этой последовательности число q , называется геометрической прогрессией. Число q называется знаменателем прогрессии. Любой член геометрической прогрессии вычисляется по формуле:
  • Сумма n первых членов геометрической прогрессии вычисляется как:
Историческая справка Уже в Древнем Египте знали не только арифметическую, но и геометрическую прогрессию. Об этом свидетельствует приведенная ниже задача из папируса Райнда. Эта задача много раз с разными вариациями повторялась и у других народов в другие времена. Например, в написанной в XIII в. «Книге об абаке» Леонардо Пизанского (Фибоначчи) есть задача, в которой фигурируют 7 старух, направляющихся в Рим (очевидно, паломниц), у каждой из которых 7 мулов, на каждом из которых по 7 мешков, в каждом из которых по 7 хлебов, в каждом из которых по 7 ножей, каждый из которых в 7 ножнах. В задаче спрашивается, сколько всего предметов.

Историческая справка

Уже в Древнем Египте знали не только арифметическую, но и геометрическую прогрессию. Об этом свидетельствует приведенная ниже задача из папируса Райнда. Эта задача много раз с разными вариациями повторялась и у других народов в другие времена. Например, в написанной в XIII в. «Книге об абаке» Леонардо Пизанского (Фибоначчи) есть задача, в которой фигурируют 7 старух, направляющихся в Рим (очевидно, паломниц), у каждой из которых 7 мулов, на каждом из которых по 7 мешков, в каждом из которых по 7 хлебов, в каждом из которых по 7 ножей, каждый из которых в 7 ножнах. В задаче спрашивается, сколько всего предметов.

«У семи лиц по семи кошек; каждая кошка съедает по семи мышей, каждая мышь съедает по семи колосьев, из каждого колоса может вырасти по семь мер ячменя. Как велики числа этого ряда и их сумма?»

«У семи лиц по семи кошек; каждая кошка съедает по семи мышей, каждая мышь съедает по семи колосьев, из каждого колоса может вырасти по семь мер ячменя. Как велики числа этого ряда и их сумма?»

Людей всего 7, кошек 72 = 49, они съедают всего 73 = 343 мыши, которые съедают всего 74 = 2401 колосьев, из них вырастает 75 = 16807 мер ячменя, в сумме эти числа дают 19 607.
  • Людей всего 7, кошек 72 = 49, они съедают всего 73 = 343 мыши, которые съедают всего 74 = 2401 колосьев, из них вырастает 75 = 16807 мер ячменя, в сумме эти числа дают 19 607.
Рассказывают, что индийский принц Сирам рассмеялся, услышав, какую награду попросил у него изобретатель шахмат: за первую клетку шахматной доски – одно зерно, за вторую – два, за третью –четыре, за четвертую – восемь и так далее до 64-го поля. Нетрудно сосчитать, используя формулу количество зерна, нужное для расплаты, составляет примерно 18,5*1018.   Если бы принцу удалось засеять пшеницей площадь всей поверхности Земли, считая и моря , и океаны, и пустыни, и Арктику с Антарктикой, то получить удовлетворительный урожай, то за пять лет он смог бы рассчитаться с просителем. Такое количество зерен пшеницы можно собрать лишь с площади в 2000 раз большей поверхности Земли. Это превосходит количество пшеницы, собранной человечеством до нашего времени.
  • Рассказывают, что индийский принц Сирам рассмеялся, услышав, какую награду попросил у него изобретатель шахмат: за первую клетку шахматной доски – одно зерно, за вторую – два, за третью –четыре, за четвертую – восемь и так далее до 64-го поля. Нетрудно сосчитать, используя формулу

количество зерна, нужное для расплаты, составляет примерно 18,5*1018. Если бы принцу удалось засеять пшеницей площадь всей поверхности Земли, считая и моря , и океаны, и пустыни, и Арктику с Антарктикой, то получить удовлетворительный урожай, то за пять лет он смог бы рассчитаться с просителем. Такое количество зерен пшеницы можно собрать лишь с площади в 2000 раз большей поверхности Земли. Это превосходит количество пшеницы, собранной человечеством до нашего времени.

Некто продавал коня и просил за него 1000 рублей. Купец сказал, что за коня запрошена слишком большая цена.
  • Некто продавал коня и просил за него 1000 рублей. Купец сказал, что за коня запрошена слишком большая цена. "Хорошо, - ответил продавец, - если ты говоришь, что конь дорого стоит, то возьми его себе даром, а заплати только за его гвозди в подковах. А гвоздей во всякой подкове по 6 штук. И будешь ты мне за них платить таким образом: за первый гвоздь полушку, за второй гвоздь заплатишь две полушки, за третий гвоздь - четыре полушки, и так далее за все гвозди: за каждый в два раза больше,чем за предыдущий". Купец же, думая, что заплатит намного меньше, чем 1000 рублей, согласился. Проторговался ли купец, и если да, то насколько?
За 24 подковных гвоздя пришлось уплатить копеек. Сумма эта равна копеек, т.е. около 42 тысяч рублей. При таких условиях не обидно дать и лошадь в придачу
  • За 24 подковных гвоздя пришлось уплатить
  • копеек. Сумма эта равна
  • копеек, т.е. около 42 тысяч рублей. При таких условиях не обидно дать и лошадь в придачу
СПАСИБО ЗА ВНИМАНИЕ!

СПАСИБО ЗА ВНИМАНИЕ!

-80%
Курсы дополнительного образования

Кухни мира

Продолжительность 72 часа
Документ: Cвидетельство о прохождении курса
4000 руб.
800 руб.
Подробнее
Скачать разработку
Сохранить у себя:
Геометрическая прогрессия (184.74 KB)

Комментарии 0

Чтобы добавить комментарий зарегистрируйтесь или на сайт