Меню
Видеоучебник
Видеоучебник  /  Геометрия  /  10 класс  /  Геометрия 10 класс ФГОС  /  Углы с сонаправленными сторонами

Углы с сонаправленными сторонами

Урок 8. Геометрия 10 класс ФГОС

В этом уроке мы введем понятие сонаправленных лучей. Дадим их определение. А затем докажем теорему о равенстве углов с сонаправленными сторонами.

Конспект урока "Углы с сонаправленными сторонами"

Вопросы занятия:

·     введем понятие сонаправленных лучей;

·     дадим определение сонаправленных лучей;

·     докажем теорему о равенстве углов с сонаправленными сторонами.

Материал урока.

На этом уроке нам понадобится одна из аксиом планиметрии, которая звучит следующим образом: «любая прямая разбивает плоскость на две полуплоскости».

Итак, пусть у нас есть некоторая прямая а, которая лежит в плоскости α. Согласно аксиоме, эта прямая разделяет плоскость α на две части. Каждую из которой, называют полуплоскостью.

Понятно, что наша прямая а разделила плоскость α на две полуплоскости. Одна из которых лежит слева от прямой а, вторая – справа. В свою очередь, прямую а называют границей каждой из этих полуплоскостей.

Обратите внимание, любые две точки одной и той же полуплоскости лежат по одну сторону от прямой а. А вот любые две точки разных полуплоскостей лежат по разные стороны от этой прямой.

Определение. Два луча ОА и О1А один в пространстве, не лежащие на одной прямой, называются сонаправленными (т.е. одинаково направленными), если они параллельны и лежат в одной полуплоскости с границей ОО1.

Напомню, что два луча называются параллельными, если они лежат на параллельных прямых.

Лучи ОА и O1A1, лежащие на одной прямой, называются сонаправленными, если они совпадают или один из них содержит другой.

Докажем теорему об углах с сонаправленными сторонами.

Теорема. Если стороны двух углов соответственно сонаправленны, то такие углы равны.

Доказательство. Рассмотрим случай, когда углы О и О1 с соответственно сонаправленными сторонами лежат в разных плоскостях.

Пусть нам даны параллельные лучи ОА и О1А1 и параллельные лучи ОB и

О1B1. Т.е. мы имеем два угла АОB и А1О1B1, стороны которых лежат на сонаправленных лучах. Докажем, что угол АОB равен углу А1О1B1.

Отметим на сторонах лучей ОА и O1A1 точки А и A1 так, чтобы отрезки ОА и O1A1 были равны. На сторонах лучей ОB и O1B1 отметим точки B и B1 так, чтобы отрезки ОB и O1B1 были равны.

Рассмотрим четырехугольник ОАA1O1. Так как лучи ОА и O1A1 параллельны по условию (сонаправленны ) и равны по построению, то четырехугольник ОАА1О1 является параллелограммом по признаку параллелограмма. Следовательно, АА1 параллельно ОО1 и АА1 равно ОО1.

Рассмотрим четырехугольник ОBB1O1. Его стороны ОB и O1B1 параллельны, т.к. лежат на сонаправленных лучах по условию и равны по построению. Значит, по признаку параллелограмма четырехугольник OBB1O1 является параллелограммом. Тогда, стороны BB1 и OO1 параллельны и равны.  

Обратите внимание, мы получили, что прямая AA1 параллельна прямой OO1 и прямая BB1 параллельна прямой OO1. Тогда по признаку параллельности прямых в пространстве, прямые AA1 и BB1 параллельны.

Рассмотрим четырехугольник BAA1B1. В этом четырехугольнике стороны AA1 и BB1 параллельны и равны. А значит, BAA1B1 – параллелограмм по признаку параллелограмма. Следовательно, стороны АB и A1B1 тоже параллельны и равны.

Теперь рассмотрим треугольники АОB и A1O1B1. Стороны ОА и O1A1 равны по построению. Стороны ОB и O1B1 также равны по построению. Выше мы доказали, что стороны АB и A1B1 равны. Значит, треугольники АОB и A1O1B1 равны по трем сторонам. Напомню, что в равных треугольниках против соответственно равных сторон лежат равные углы. Значит, углы АОB и A1O1B1 равны. Теорема доказана.

Задание. Рассмотрите рисунок и 

а) укажите лучи, которые являются сонаправленными;

б) укажите лучи, которые не являются сонаправленными.

Решение.

Подведем итоги урока. На этом уроке мы ввели понятие сонаправленных лучей. Узнали, что два луча ОА и О один А один в пространстве, не лежащие на одной прямой, называются сонаправленными, если они параллельны и лежат в одной полуплоскости с границей О О один. Лучи ОА и О один А один, лежащие на одной прямой, называются сонаправленными, если они совпадают или один из них содержит другой. А также доказали теорему о равенстве углов с сонаправленными сторонами.

0
15032

Комментарии 0

Чтобы добавить комментарий зарегистрируйтесь или на сайт