Меню
Конспекты
Конспекты  /  Математика  /  9 класс  /  Геометрия 9 класс  /  Вычитание векторов

Вычитание векторов

Урок 7. Геометрия 9 класс

На этом уроке вводится правило построения вектора разности двух векторов. А так же, после введения понятия вектора противоположного данному вектору, рассматриваются примеры построения вектора разности по правилам построения вектора суммы.

Конспект урока "Вычитание векторов"

Вам уже знакомы правила сложения векторов.

Чтобы сложить неколлинеарные векторы  и   по правилу треугольника, нужно от некоторой точки А отложить вектор , равный вектору . Далее от точки B отложить вектор , равный вектору . Вектор  является вектором суммы двух векторов  и .

Для сложения этих же векторов можно использовать правило параллелограмма. При этом нужно отложить от произвольной точки А векторы  и , равные векторам  и  соответственно, и построить на них параллелограмм ABCD. Тогда вектор  равен сумме векторов  и .

Для сложения нескольких векторов применяют правило многоугольника. При этом от некоторой точки последовательно откладывают векторы друг за другом, и вектором их суммы является вектор, проведённый от начала первого вектора к концу последнего.

Так же вам известны законы сложения векторов: переместительный и сочетательный.

На этом уроке поговорим о разности двух векторов. Её обозначают так .

Разностью векторов  и  называют такой вектор , сумма которого с вектором  равна вектору .

Чтобы получить представление о разности двух векторов, решим задачу.

Задача. По данным векторам  и  построить вектор .

Построение

 

 

 

.

Вектор  — искомый.

Эту задачу можно решить другим способом.

Но перед тем как его привести введём понятие вектора, противоположного данному.

Для произвольного ненулевого вектора  вектор  будет противоположным, если:

Вектор, противоположный вектору , обозначается так . И говорят «вектор минус a».

Очевидно, что сумма вектора  с противоположным ему равна нулевому вектору .

Запишем теорему о разности двух векторов.

Для любых векторов  и  справедливо равенство .

Докажем данную теорему.

Доказательство.

Что и требовалось доказать.

Опираясь на эту теорему, приведём ещё одно решение задачи на построение разности векторов .

Способ

 

Отметим произвольную точку О и от неё отложим вектор . Далее отложим от точки А вектор .

По правилу треугольника сумма .

 

А значит, пользуясь теоремой о разности двух векторов, можем сделать вывод о том, что разность векторов . И вектор  — искомый.

Итак, можем сделать вывод, что вектор разности двух векторов можно строить двумя способами.

Можно от некоторой точки О отложить векторы  и , равные векторам . При этом вектором их разности будет вектор , направленный от конца вектора-вычитаемого к концу вектора-уменьшаемого.

Так же, пользуясь теоремой о разности двух векторов, разность векторов  можно представить в виде суммы вектора .

Тогда, отложив от некоторой точки О вектор , равные вектору , а от точки А — вектор , равный вектору , по правилу треугольника получим вектор .

Он является вектором суммы вектора . И, соответственно, вектором разности векторов .

Задача. Начертить попарно неколлинеарные векторы ,  и . Построить на них векторы: , , , ,  и .

Построение.

Для начала построим векторы, противоположные данным.

Векторы являются противоположными, если их длины равны и они противоположно направлены.

Выберем точки А, B и C, от которых будем откладывать противоположные векторы.

Далее через каждую из этих точек проведём прямые параллельные векторам ,  и   соответственно.

От отмеченных точек на проведённых прямых можно изобразить векторы, равные данным, и, противоположные данным. Нам нужны те, которые противоположны векторам ,  и    соответственно.

Так мы построили векторы ,  и .

Задача. Сторона квадрата  равна . Найти  и .

Построение.

Решение.

 

По  теореме Пифагора: 

Ответ: ; .

Подведём итоги нашего урока.

Сегодня вы познакомились с понятием противоположного вектора. Противоположные векторы имеют равные длины и противоположно направлены.

Мы ввели понятие разности двух векторов. Разностью векторов ,  называют такой вектор , сумма которого с вектором    равна вектору .

Для построения вектора разности мы выделили два способа.

Можно от некоторой точки О отложить векторы  и , равные векторам  и . При этом вектором их разности будет вектор, направленный от конца вектора-вычитаемого к концу вектора-уменьшаемого.

Так же, пользуясь теоремой о разности двух векторов, разность векторов  и  можно представить в виде суммы вектора  и вектора, противоположного вектору  .

Тогда, отложив от некоторой точки О вектор , равный вектору , а от точки А — вектор , равный вектору , по правилу треугольника получим вектор .

Он является вектором суммы вектора  и вектора, противоположного вектору . И, соответственно, вектором разности векторов  и .

Теперь вы владеете не только правилами сложения, а ещё и правилом вычитания векторов.

0
4086

Комментарии 0

Чтобы добавить комментарий зарегистрируйтесь или на сайт

Вы смотрели