Меню
Видеоучебник
Видеоучебник  /  Физика  /  10 класс  /  Физика 10 класс ФГОС  /  Зависимость сопротивления проводника от температуры. Сверхпроводимость

Зависимость сопротивления проводника от температуры. Сверхпроводимость

Урок 57. Физика 10 класс ФГОС

На этом уроке мы вспомним, что такое сопротивление проводника и от каких параметров оно зависит. Выясним, как изменяется сопротивление проводника при изменении его температуры. Узнаем, что называют температурным коэффициентом сопротивления. А также поговорим о явлении сверхпроводимости.
Плеер: YouTube Вконтакте

Конспект урока "Зависимость сопротивления проводника от температуры. Сверхпроводимость"

Изучая закон Ома для участка цепи мы с вами ввели понятие электрического сопротивления, как физическую величину, характеризующую свойства проводника препятствовать прохождению электрического тока в нём.

При этом мы с вами показали, что сопротивление проводника прямо пропорционально его длине, обратно пропорционально площади поперечного сечения и зависит от вещества, из которого этот проводник изготовлен:

Напомним, что электрические свойства проводника характеризуются его удельным сопротивлением.

Как вы знаете, в таблицах удельных сопротивлений веществ очень часто указывается температура, при которой удельное сопротивление было измерено. Тогда логично предположить, что сопротивление проводника должно каким-то образом зависеть от температуры.

Проверим это предположение на опыте. Для этого соберём электрическую цепь, состоящую из источника тока, проволочной спирали и амперметра. Включим источник тока, и отметим показание амперметра.

А теперь давайте нагреем исследуемую спиральку, например, с помощью спиртовки. Не трудно увидеть, что показания амперметра начинают уменьшаться. Вывод очевиден: при увеличении температуры сопротивление металлов увеличивается.

Объясняется этот факт достаточно просто. Вы знаете, что удельное сопротивление вещества металлического проводника зависит от концентрации свободных носителей заряда и числа их столкновений с ионами кристаллической решётки, совершающими колебательные движения около положений устойчивого равновесия. В металлических проводниках концентрация свободных электронов практически постоянна для данного проводника и не зависит от температуры.

Однако число столкновений свободных электронов с ионами кристаллической решётки с ростом температуры возрастает. Это приводит к возрастанию удельного сопротивления металлического проводника при повышении температуры.

Если принять, что при 273 К (то есть при 0 оС) удельное сопротивление проводника равно ρ0, а при температуре Т оно равно ρ, то, как показывает опыт, относительное изменение удельного сопротивления пропорционально изменению абсолютной температуры (которое, напомним, совпадает с изменением температуры по шкале Цельсия):

В записанном уравнении α — это температурный коэффициент. Он численно равен относительному изменению удельного сопротивления вещества проводника при изменении его температуры на 1 К:

Таким образом, удельное сопротивление вещества металлического проводника возрастает с увеличением температуры.

Поскольку сопротивление проводника прямо пропорционально удельному сопротивлению вещества, из которого изготовлен проводник, то, не учитывая незначительную температурную зависимость отношения l/S, можно записать такие соотношения:

Здесь R0 и R — это сопротивления проводника соответственно при нуле градусов Цельсия и при данной температуре.

Отметим, что для металлических проводников эти формулы применимы при температурах более T >140 К.

У всех металлов при повышении температуры сопротивление возрастает. То для них температурный коэффициент сопротивления — это величина положительная. У растворов же электролитов наоборот с ростом температуры сопротивление уменьшается. Значит их температурный коэффициент сопротивления меньше нуля.

Для большинства металлов (но не сплавов) при температурах от 0 для 100 оС температурный коэффициент можно считать постоянным и равным его среднему значению на этом интервале температур:

Давайте, для примера определим сопротивление алюминиевого проводника при температуре 90 оС, если при температуре 20 оС его сопротивление равно 4 Ом. Температурный коэффициент сопротивления алюминия α = 4,2 · 10–3 К–1.

Зависимость сопротивления металлов от температуры используют в специальных приборах — термометрах сопротивления. Широкое распространение получили термометры сопротивления из чистых металлов, особенно платины и меди, которые конструктивно представляют собой металлическую проволоку, намотанную на жёсткий каркас (из кварца, фарфора или слюды), заключённый в защитную оболочку (из металла, кварца, фарфора, стекла). Платиновые термометры сопротивления применяют для измерения температуры в пределах от –263 до 1064 oС, а медные — от –50 до 180 oС.

Если при изготовлении электроизмерительных приборов требуются проводники, сопротивление которых должно как можно меньше зависеть от температуры окружающей среды, то используют специальные сплавы — константан и манганин.

В 1911 году голландский физик Хейке Камерлинг-Оннес исследуя зависимость сопротивления ртути от температуры обнаружил одно замечательное явление. Вначале эксперимента всё шло по плану: сопротивление металла при охлаждении постепенно уменьшалось. Однако при температуре меньше либо равной 4,12 К (по современным измерениям при 4,15 К) электрическое сопротивление ртути резко исчезало.

Явление падения до нуля сопротивления проводника при определённой температуре называется сверхпроводимостью, а проводник в этом состоянии — сверхпроводником.

Температуру, при которой электрическое сопротивление проводника обращается в ноль, называют критической температурой.

Открытие Камерлинг-Оннеса, за которое в 1913 году ему была присуждена Нобелевская премия, повлекло за собой исследования свойств веществ при низких температурах. Позже многочисленными опытами было установлено, что это явление характерно для многих проводников. Каждый сверхпроводящий металл характеризуется своей критической температурой.

У веществ в сверхпроводящем состоянии были отмечены резкие аномалии магнитных, тепловых и ряда других свойств. Так, например, если в кольцевом проводнике, находящемся в сверхпроводящем состоянии, создать ток, а затем удалить источник тока, то сила этого тока в таком проводнике не меняется сколь угодно долго. В обычном же (несверхпроводящем) проводнике электрический ток в этом случае прекращается. Это указывает на перспективу использования явления сверхпроводимости при передаче электрической энергии.

Сверхпроводящие соединения нашли применение в качестве материала обмоток электромагнитов для создания сильных магнитных полей в установках управляемого термоядерного синтеза, а также в мощных электрических двигателях и генераторах.

Объяснение сверхпроводимости возможно только на основе квантовой теории. Оно было дано лишь в 1957 году американскими учёными Джоном Бардиным, Леоном Купером и Джоном Шриффером, а также советским учёным и академиком Николаем Николаевичем Боголюбовым.

Очень упрощённо механизм сверхпроводимости можно объяснить так: при критической температуре электроны объединяются в правильную шеренгу и движутся, не сталкиваясь с кристаллической решёткой, состоящей из ионов. Это движение существенно отличается от обычного теплового движения, при котором свободный электрон движется хаотично.

В 1986 году была открыта высокотемпературная сверхпроводимость. Получены сложные оксидные соединения лантана, бария и других элементов с температурой перехода в сверхпроводящее состояние около 100 К. Это выше температуры кипения жидкого азота при атмосферном давлении (77 К).

Высокотемпературная сверхпроводимость в недалёком будущем приведёт наверняка к новой технической революции во всей электротехнике, радиотехнике и конструировании компьютеров.

17734

Комментарии 0

Чтобы добавить комментарий зарегистрируйтесь или на сайт