Меню
Учебник
Учебник  /  Физика  /  10 класс  /  Физика 10 класс ФГОС  /  Работа и мощность электрического тока

Работа и мощность электрического тока

Урок 54. Физика 10 класс ФГОС

В этом видеоуроке мы вспомним, что понимают под работой электрического тока. Узнаем, что такое мощность тока и с помощью каких приборов её можно измерить. Выясним, почему происходит нагревание проводника при прохождении по нему электрического тока. А также сформулируем закон Джоуля — Ленца.

Конспект урока "Работа и мощность электрического тока"

На одном из прошлых уроков мы с вами говорили о том, что заряженные тела взаимодействуют друг с другом посредством особого вида материи, которую называют электрическим полем. Примером такого взаимодействия может служить электрический ток, то есть упорядоченное движение заряженных частиц, которое создаётся электрическим полем. Следовательно, электрическое поле способно совершать работу, которую называют работой тока.

Давайте вспомним, что в общем случае под работой понимают скалярную физическую величину, которая описывает действие силы (заметьте, именно силы, а не те́ла), приводящее к изменению значения скорости рассматриваемого тела.

Из этого становится очевидным, что термин «работа тока» — это своеобразный жаргонизм, с которым вы уже неоднократно сталкивались. Работа тока — это, говоря строгим языком физики, работа электрически сил, которые, перемещая заряженные частицы, увеличивают их скорость, а значит и кинетическую энергию.

Мы уже с вами знаем, что работа по переносу электрического заряда в электрическом поле оценивается произведением величины перенесённого заряда на величину разности потенциалов между начальной и конечной точками переноса, то есть на величину напряжения:

A = ΔqU.

Очевидно, что это соотношение может быть применимо и для оценки работы тока. Однако эта формула имеет неудобство в связи с тем, что и ней фигурирует перенесённый в электрическом поле заряд, измерение которого требует особых методов. Поэтому удобнее расписать этот заряд, используя формулу силы тока:

Такая запись приводит нас к удобной формуле для определения работы электрического тока: работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого шёл ток:

A = IUΔt.

 Единицей работы тока, как вы догадались, является джоуль. Эту единицу можно выразить через электрические единицы — ампер и вольт:

1 Дж = 1 А ∙ 1 В ∙ 1 с.

Для измерения работы тока в реальной жизни пользуются специальными приборами — счётчиками электрической энергии, которые сейчас можно увидеть в каждом доме. Однако в них работу тока принято выражать не в джоулях, а в киловатт-часах (1 кВт ∙ час = 3,6 ∙ 106 Дж).

Применяя к потребителю электротока закон Ома, можно из основной формулы работы получить ещё два варианта, исключив в первом случае из формулы напряжение, а во-втором — силу тока:

Получив формулу для работы электрического тока, мы легко получим и формулу для мощности тока. Ведь в любом случае мощность есть отношение работы ко времени её совершения:

Напомним, что единицей измерения мощности является ватт.

А для измерения мощности электрического тока в цепи используют специальные приборы, называемые ваттметрами.

Давайте для примера решим с вами такую задачу. Два потребителя, сопротивления которых равны R1 и R2 подключают к сети постоянного тока сначала последовательно, а потом — параллельно. В каком случае потребляется большая мощность от сети?

На одном из прошлых уроков мы с вами говорили о действиях электрического тока, которые он способен оказывать, протекая в различных средах. Давайте с вами вспомним, что тепловое действие тока проявляется в том, что при протекании тока по проводнику последний нагревается.

Химическое действие тока мы можем наблюдать при его прохождении через растворы солей, кислот или щелочей.

А магнитное действие тока проявляется в создании им магнитного поля.

Также мы с вами говорили о том, что тепловое действие ток производит в любой среде: твёрдой, жидкой и газообразной. Например, нагревание проводника происходит потому, что разогнавшиеся под действием электрического поля свободные носители зарядов — электроны — сталкиваются с ионами кристаллической решётки проводника и отдают им часть своей энергии. В результате энергия теплового движения ионов около положений равновесия возрастает. То есть происходит переход энергии электрического поля во внутреннюю энергию проводника.

При этом, очевидно, что чем больше будет сопротивление проводника, тем большее количество теплоты в нём выделится при протекании электрического тока одной и той же силы.

Это легко проверить на простом опыте. Возьмём три последовательно соединённых проводника, изготовленных из разных материалов, например, из нихрома, никелина и меди, и подключим их к источнику постоянного тока.

Спустя некоторое время мы заметим, нихромовый проводник нагрелся почти до белого каления, никелиновый — лишь слегка покраснел, а вот медный проводник практически не изменил свой цвет.

Таким образом, действительно, чем больше сопротивление проводника, тем «труднее» двигаться зарядам в нём и тем больше нагревается проводник.

В 1841 году английский учёный Джеймс Прескотт Джоуль и независимо от него в 1842 году российский учёный Эмилий Христианович Ленц, изучая на опыте тепловые действия тока установили закон, позволяющий рассчитать количество теплоты, выделяемое в проводнике при протекании в нём электрического тока. Согласно этому закону, количество теплоты, выделяющееся в проводнике, прямо пропорционально квадрату силы тока, проходящего по проводнику, сопротивлению проводника и времени, в течение которого поддерживается неизменный ток в проводнике.

Проверим его справедливость с помощью такого опыта. Возьмём калориметр, содержащий 100 мл миллилитров воды при температуре 18 оС, и поместим в неё проводник в виде спиральки известного сопротивления. Концы проводника включим в цепь, состоящую из источника тока, амперметра и ключа. С помощью секундомера будем засекать время эксперимента.

Замкнув ключ, подождём пока температура воды в калориметре не повысится на 10 оС.

Теперь рассчитаем количество теплоты, полученное водой, используя для этого известную нам формулу из термодинамики:

Здесь c — это удельная теплоёмкость воды; m — её масса; а Δt — изменение температуры воды. Тогда после подстановки чисел и простых расчётов, получаем, что вода получила от нагревателя 4200 Дж теплоты.

Теперь определим количество теплоты, выделившееся в проводнике, используя для этого закон Джоуля — Ленца:

Подставив в полученное уравнение данные наших опытов, найдём, что за время эксперимента в проводнике выделились те же 4200 Дж теплоты. Это подтверждает правоту закона Джоуля — Ленца.

Формулой Q = I2RΔt удобно пользоваться при расчёте количества теплоты, которое выделяется в проводниках при последовательном соединении, так как в этом случае ток во всех проводниках один и тот же.

При параллельном же соединении проводников ток в них различен, а вот напряжение на концах этих проводников одно и то же. Поэтому расчёт количества теплоты при таком соединении удобнее вести по формуле: Q = U2Δt / R.

Эта формула показывает, что при параллельном соединении в каждом проводнике выделяется количество теплоты, обратно пропорциональное сопротивлению проводника.

332

Комментарии 0

Чтобы добавить комментарий зарегистрируйтесь или на сайт