Меню
Разработки
Разработки  /  Математика  /  Кабинет  /  7 класс  /  Теория деления многочлена на многочлен

Теория деления многочлена на многочлен

Древнегреческие математики называли этот алгоритм «взаимное вычитание». Этот алгоритм не был открыт Евклидом, так как упоминание о нём имеется уже в Топике

Аристотеля. В «Началах» Евклида он описан дважды — в VII книге для нахождения наибольшего общего делителя двух натуральных чисел и в X книге для нахождения наибольшей общей меры двух однородных величин. В обоих случаях дано геометрическое описание алгоритма, для нахождения «общей меры» двух отрезков.

     Историками математики (Цейтен и др.) было выдвинуто предположение, что именно с помощью алгоритма Евклида (процедуры последовательного взаимного вычитания) в древнегреческой математике впервые было открыто существование несоизмеримых величин (стороны и диагонали квадрата, или стороны и диагонали правильного пятиугольника). Впрочем, это предположение не имеет достаточных документальных подтверждений. Алгоритм для поиска наибольшего общего делителя двух натуральных чисел описан также в I книге древнекитайского трактата Математика в девяти книгах.

     Ряд математиков средневекового Востока - Сабит ибн Курра, ал-Махани, Ибн ал-Хайсам, Омар Хайям, попытались построить на основе алгоритма Евклида теорию отношений, альтернативную по отношению теории отношений Евдокса, изложенной в V книге «Начал» Евклида. Согласно определению, предложенному этими авторами, четыре величины, первая ко второй и третья к четвёртой, имеют между собой одно и то же отношение, если при последовательном взаимном вычитании второй величин в обеих парах на каждом шаге будут получаться одни и те же неполные частные.

26.09.2016

Содержимое разработки

Алгоритм деления «уголком» многочленов от одной переменной

      Напомним, что разделить натуральное число   a   на натуральное число   b   – это значит представить число   a   в виде:

a = bc + r ,

где частное   c   и остаток   r   – целые неотрицательные числа, причем остаток   r   удовлетворяет неравенству:

      Если друг на друга делить многочлены, то возникает похожая ситуация.

      Действительно, при выполнении над многочленами операций сложения, вычитания и умножения результатом всегда будет многочлен. В частности, при перемножении двух многочленов, отличных от нуля, степень произведения будет равна сумме степеней сомножителей.

      Однако в результате деления многочленов многочлен получается далеко не всегда.

      Говорят, что один многочлен нацело (без остатка) делится на другой многочлен, если результатом деления является многочлен.

      Если же один многочлен не делится нацело на другой многочлен, то всегда можно выполнить деление многочленов с остатком, в результате которого и частное, и остаток будут многочленами.

      Определение. Разделить многочлен   a(x)   на многочлен   b(x)   с остатком – это значит представить многочлен   a(x)   в виде

a(x) = b(x) c(x) + r(x) ,

где многочлен   c(x)   – частное, а многочлен   r(x)   –  остаток, причем, степень остатка удовлетворяет неравенству:

.

      Очень важно отметить, что формула

a(x) = b(x) c(x) + r(x)

является тождеством, т.е. равенством, справедливым при всех значениях переменной   x .

      При делении (с остатком или без остатка) многочлена на многочлен меньшей степени в частном получается многочлен, степень которого равна разности степеней делимого и делителя.

      Один из способов деления многочленов с остатком – это деление многочленов «уголком», что представляет собой полную аналогию с тем, как это происходит при делении целых чисел.

      К описанию этого способа деления многочленов мы сейчас и переходим.

      Пример. Заранее расположив многочлены по убывающим степеням переменной, разделим многочлен

2x4x3 + 5x2 – 8x + 1

на многочлен

x2x + 1 .

      Решение. Опишем алгоритм деления многочленов «уголком» по шагам:

  1. Делим первый член делимого   2x4   на первый член делителя   x2.   Получаем первый член частного   2x2 .

  2. Умножаем первый член частного   2x2   на делитель   x2x + 1,   а результат умножения

2x4 – 2x3 + 2x2

пишем под делимым   2x4x3 + 5x2 – 8x + 1 .

  1. Вычитаем из делимого написанный под ним многочлен. Получаем первый остаток

x3 + 3x2– 8x .

Если бы этот остаток был равен нулю, или был многочленом, степень которого меньше, чем степень делителя ( в данном случае меньше   2),   то процесс деления был бы закончен. Однако это не так, и деление продолжается.

  1. Делим первый член остатка   x3   на первый член делителя   x2 .   Получаем второй член частного   x .

  2. Умножаем второй член частного   x   на делитель    x2x + 1 ,    а результат умножения

x3x2 + x

пишем под первым остатком   x3 + 3x2– 8x .

  1. Вычитаем из первого остатка написанный под ним многочлен. Получаем второй остаток

4x2 – 9x + 1 .

Если бы этот остаток был бы равен нулю, или был многочленом, степень которого меньше, чем степень делителя, то процесс деления был бы закончен. Однако это не так, и деление продолжается.

  1. Делим первый член второго остатка   4x2   на первый член делителя   x2 .   Получаем третий член частного   4.

  2. Умножаем третий член частного   4   делитель   x2x + 1 ,   а результат умножения

4x2 – 4x + 4

пишем под вторым остатком.

  1. Вычитаем из второго остатка написанный под ним многочлен. Получаем третий остаток

– 5x – 3 .

Степень этого остатка равна   1,   что меньше, чем степень делителя. Следовательно, процесс деления закончен.

  1. Таким образом,

 2x4x3 + 5x2 – 8x + 1 = (x2x + 1) (2x2 + x + 4) – 5x – 3 ,

где 

      Запись изложенного процесса деления многочленов «уголком» имеет следующий вид:


-75%
Курсы повышения квалификации

Использование табличного процессора в обучении математики

Продолжительность 36 часов
Документ: Удостоверение о повышении квалификации
3000 руб.
750 руб.
Подробнее
Скачать разработку
Сохранить у себя:
Теория деления многочлена на многочлен (31.31 KB)

Комментарии 0

Чтобы добавить комментарий зарегистрируйтесь или на сайт