Меню
Разработки
Разработки  /  Математика  /  Планирование  /  5 класс  /  Рабочая учебная программа

Рабочая учебная программа

Изучение математики в 5 и 6 классе отводит 5 уроков в неделю в течение каждого года обучения, 34 учебных недель, 170 уроков за учебный год, 340 уроков за курс.Преподавание данного курса осуществляется в соответствии с составленной рабочей программой, на основе примерной программы основного общего образования по математике, учебника «Алгебра, 7-8» Ю.Н. Макарычева, Н.Г. Миндюка, К.И. Нешкова, С.Б. Суворовой под редакцией С.А. Теляковского и методических рекомендаций авторов учебника.Научить обучающихся использовать приобретенные знания и умения в практической деятельности и повседневной жизни и при изучении других предметов.

11.09.2018

Содержимое разработки

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ КУРСА МАТЕМАТИКИ 5-8 КЛАССОВ


ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ:

у учащихся будут сформированы:

  • ответственного отношения к учению;

  • готовности и спо­собности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;

  • умения ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

  • начальные навыки адаптации в динамично изменяющемся мире;

  • экологическая культура: ценностное отношение к природному миру, готовность следовать нормам природоохранного, здоровосберегающего поведения;

  • формирования способности к эмоциональному вос­приятию математических объектов, задач, решений, рассуж­дений.

  • умения контролировать процесс и результат учебной ма­тематической деятельности;

у учащихся могут быть сформированы:

  • первоначального представления о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации;

  • коммуникативная компетентность в об­щении и сотрудничестве со сверстниками, старшими и млад­еоме в образовательной, учебно-исследовательской, творче­ской и других видах деятельности;

  • критичности мышления, умения распознавать логически некорректные высказывания, отличать гипотезу от факта;

  • креативности мышления, инициативы, находчивости, активности при решении арифметических задач.

МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ:

регулятивные УУД

учащиеся научатся:

  • формулировать и удерживать учебную задачу;

  • выбирать действия в соответствии с поставленной задачей и условиями её реализации;

  • планировать пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;

  • предвидеть уровень освоения знаний, его временных характеристик;

  • составлять план и последовательность действий;

  • осуществлять контроль по образцу и вносить не­обходимые коррективы;

  • адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;

  • сличать способ действия и его результат с эталоном с целью обнаружения отклонений и отличий от эталона;

учащиеся получат возможность научиться:

  • определять последовательность промежуточных целей и соответствующих им действий с учетом конечного результата;

  • предвидеть возможности получения конкретного результата при решении задач;

  • выделять и осознавать того, что уже усвоено и что еще подлежит усвоению, осознавать качество и уровень усвоения, давать самооценку своей деятельности;

  • концентрировать волю для преодоления интеллектуальных затруднений и физических препятствий.

Познавательные УУД:

учащиеся научатся:

  • самостоятельно выделять и формулировать познавательные цели;

  • использовать общие приемы решения задач;

  • применять правила и пользоваться инструкциями, освоенными закономерностями;

  • осуществлять смысловое чтение;

  • создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;

  • самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

  • понимать сущность алгоритмических предписаний и уметь действовать в соответствии с предложенным алгоритмом;

  • умения понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;

  • умения находить в различных источниках, в том числе контролируемом пространстве Интернета, информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

учащиеся получат возможность научиться:

  • устанавливать причинно-следственные связи; строить логические рассуждения, умозаключения (индуктив­ные, дедуктивные и по еомлогии) и выводы;

  • формирования учебной и обще пользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);

  • видеть математическую задачу в других дисциплинах, в окружающей жизни;

  • выдвигать гипотезы при решении учебных задач и понимания необходимости их проверки;

  • планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

  • осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;

  • интерпретировать информацию (структурировать, переводить сплошной текст в таблицу, презентовать полученную информацию, в том числе с помощью ИКТ);

  • оценивать информацию (критическая оценка, оценка достоверности);

  • устанавливать причинно-следственные связи, выстраивать рассуждения, обобщения.

Коммуникативные УУД

учащиеся получат возможность научиться:

  • организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников;

  • взаимодействовать и находить общие способы работы; умения работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов, слушать партнёра, формулировать, аргументировать и отстаивать своё мнение;

  • прогнозировать возникновение конфликтов при наличии разных точек зрения;

  • разрешать конфликты на основе учета интересов и позиций всех участников;

  • координировать и принимать различные позиции во взаимодействии;

  • аргументировать свою позицию и координировать её с позициями партнеров в сотрудничестве при выборе общего решения в совместной деятельности.

ПРЕДМЕТНЫЕРЕЗУЛЬТАТЫ УСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА

Выпускник научится в 5-6 классах (для использования в повседневной жизни и обеспечения возможности успешного продолжения образования на базовом уровне)

Логика и множества

  • Оперировать на базовом уровне1 понятиями: множество, элемент множества, подмножество, принадлежность;

  • задавать множества перечислением их элементов;

  • находить пересечение, объединение, подмножество в простейших ситуациях.

В повседневной жизни и при изучении других предметов:

  • распознавать логически некорректные высказывания.

Числа

  • Оперировать на базовом уровне понятиями: натуральное число, целое число, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число;

  • использовать свойства чисел и правила действий с рациональными числами при выполнении вычислений;

  • использовать признаки делимости на 2, 5, 3, 9, 10 при выполнении вычислений и решении несложных задач;

  • выполнять округление рациональных чисел в соответствии с правилами;

  • сравнивать рациональные числа.

В повседневной жизни и при изучении других предметов:

  • оценивать результаты вычислений при решении практических задач;

  • выполнять сравнение чисел в реальных ситуациях;

  • составлять числовые выражения при решении практических задач и задач из других учебных предметов.

Статистика и теория вероятностей

  • Представлять данные в виде таблиц, диаграмм,

  • читать информацию, представленную в виде таблицы, диаграммы.

Текстовые задачи

  • Решать несложные сюжетные задачи разных типов на все арифметические действия;

  • строить модель условия задачи (в виде таблицы, схемы, рисунка), в которой даны значения двух из трёх взаимосвязанных величин, с целью поиска решения задачи;

  • осуществлять способ поиска решения задачи, в котором рассуждение строится от условия к требованию или от требования к условию;

  • составлять план решения задачи;

  • выделять этапы решения задачи;

  • интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;

  • знать различие скоростей объекта в стоячей воде, против течения и по течению реки;

  • решать задачи на нахождение части числа и числа по его части;

  • решать задачи разных типов (на работу, на покупки, на движение), связывающих три величины, выделять эти величины и отношения между ними;

  • находить процент от числа, число по проценту от него, находить процентное отношение двух чисел, находить процентное снижение или процентное повышение величины;

  • решать несложные логические задачи методом рассуждений.

В повседневной жизни и при изучении других предметов:

  • выдвигать гипотезы о возможных предельных значениях искомых величин в задаче (делать прикидку)

Наглядная геометрия

Геометрические фигуры

  • Оперировать на базовом уровне понятиями: фигура,точка, отрезок, прямая, луч, ломаная, угол, многоугольник, треугольник и четырёхугольник, прямоугольник и квадрат, окружность и круг, прямоугольный параллелепипед, куб, шар. Изображать изучаемые фигуры от руки и с помощью линейки и циркуля.

В повседневной жизни и при изучении других предметов:

  • решать практические задачи с применением простейших свойств фигур.

Измерения и вычисления

  • выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов;

  • вычислять площади прямоугольников.

В повседневной жизни и при изучении других предметов:

  • вычислять расстояния на местности в стандартных ситуациях, площади прямоугольников;

  • выполнять простейшие построения и измерения на местности, необходимые в реальной жизни.

История математики

  • описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки;

  • знать примеры математических открытий и их авторов, в связи с отечественной и всемирной историей.

Выпускник получит возможность научиться в 5-6 классах (для обеспечения возможности успешного продолжения образования на базовом и углублённом уровнях)

Элементы теории множеств и математической логики

  • Оперировать2 понятиями: множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность,

  • определять принадлежность элемента множеству, объединению и пересечению множеств; задавать множество с помощью перечисления элементов, словесного описания.

В повседневной жизни и при изучении других предметов:

  • распознавать логически некорректные высказывания;

  • строить цепочки умозаключений на основе использования правил логики.

Числа

  • Оперировать понятиями: натуральное число, множество натуральных чисел, целое число, множество целых чисел, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, множество рациональных чисел, геометрическая интерпретация натуральных, целых, рациональных;

  • понимать и объяснять смысл позиционной записи натурального числа;

  • выполнять вычисления, в том числе с использованием приёмов рациональных вычислений, обосновывать алгоритмы выполнения действий;

  • использовать признаки делимости на 2, 4, 8, 5, 3, 6, 9, 10, 11, суммы и произведения чисел при выполнении вычислений и решении задач, обосновывать признаки делимости;

  • выполнять округление рациональных чисел с заданной точностью;

  • упорядочивать числа, записанные в виде обыкновенных и десятичных дробей;

  • находить НОД и НОК чисел и использовать их при решении зада;.

  • оперировать понятием модуль числа, геометрическая интерпретация модуля числа.

В повседневной жизни и при изучении других предметов:

  • применять правила приближенных вычислений при решении практических задач и решении задач других учебных предметов;

  • выполнять сравнение результатов вычислений при решении практических задач, в том числе приближенных вычислений;

  • составлять числовые выражения и оценивать их значения при решении практических задач и задач из других учебных предметов.

Уравнения и неравенства

  • Оперировать понятиями: равенство, числовое равенство, уравнение, корень уравнения, решение уравнения, числовое неравенство.

Статистика и теория вероятностей

  • Оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое,

  • извлекать, информацию, представленную в таблицах, на диаграммах;

  • составлять таблицы, строить диаграммы на основе данных.

В повседневной жизни и при изучении других предметов:

  • извлекать, интерпретировать и преобразовывать информацию, представленную в таблицах и на диаграммах, отражающую свойства и характеристики реальных процессов и явлений.

Текстовые задачи

  • Решать простые и сложные задачи разных типов, а также задачи повышенной трудности;

  • использовать разные краткие записи как модели текстов сложных задач для построения поисковой схемы и решения задач;

  • знать и применять оба способа поиска решения задач (от требования к условию и от условия к требованию);

  • моделировать рассуждения при поиске решения задач с помощью граф-схемы;

  • выделять этапы решения задачи и содержание каждого этапа;

  • интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;

  • анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние) при решении задач на движение двух объектов как в одном, так и в противоположных направлениях;

  • исследовать всевозможные ситуации при решении задач на движение по реке, рассматривать разные системы отсчёта;

  • решать разнообразные задачи «на части»,

  • решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби;

  • осознавать и объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение); выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задачи указанных типов.

В повседневной жизни и при изучении других предметов:

  • выделять при решении задач характеристики рассматриваемой в задаче ситуации, отличные от реальных (те, от которых абстрагировались), конструировать новые ситуации с учётом этих характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества;

  • решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат;

  • решать задачи на движение по реке, рассматривая разные системы отсчета.

Наглядная геометрия

Геометрические фигуры

  • Извлекать, интерпретировать и преобразовывать информацию о геометрических фигурах, представленную на чертежах;

  • изображать изучаемые фигуры от руки и с помощью компьютерных инструментов.

Измерения и вычисления

  • выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов;

  • вычислять площади прямоугольников, квадратов, объёмы прямоугольных параллелепипедов, кубов.

В повседневной жизни и при изучении других предметов:

  • вычислять расстояния на местности в стандартных ситуациях, площади участков прямоугольной формы, объёмы комнат;

  • выполнять простейшие построения на местности, необходимые в реальной жизни;

  • оценивать размеры реальных объектов окружающего мира.

История математики

  • Характеризовать вклад выдающихся математиков в развитие математики и иных научных областей.


Содержание обучения.5 класс

  1. Линии

Линии на плоскости. Прямая. Отрезок. Луч. Единицы измерения длины. Длина отрезка. Длина ломаной. Окружность.

Основная цель - развить представление о линии, продолжить формирование графических навыков и измерительных умений.

  1. Натуральные числа.

Натуральные числа и нуль. Десятичная система счисления. Римская нумерация. Ряд натуральных чисел. Сравнение. Округление натуральных чисел. Перебор возможных вариантов.

Основная цель - систематизировать и развить знания учащихся о натуральных числах, научить читать и записывать большие числа, сравнивать и округлять, ознакомить с элементарными приемами прикидки и оценки результатов вычислений, изображать числа точками на координатной прямой, сформировать первоначальные навыки решения комбинаторных задач с помощью перебора возможных вариантов.

  1. Действияс натуральными числами.

Арифметические действия с натуральными числами. Свойства сложения и умножения. Квадрат и куб числа. Числовые выражения. Степень с натуральным показателем. Решение арифметических задач. Задачи на движение. Единицы измерения времени и скорости. Длительность процессов в окружающем мире.

Основная цель - закрепить и развить навыки арифметических действий с натуральными числами, углубить навыки решения текстовых задач арифметическим способом.

  1. Использование свойств действий при вычислениях.

Законы арифметических действий: переместительный, сочетательный,

распределительный. Числовые выражения, порядок действий в них, использование скобок. Текстовые задачи. Решение текстовых задач арифметическим способом. Задачи на части. Задачи на уравнивание.

Основная цель - расширить представление учащихся о свойствах арифметических действий, продемонстрировать возможность применения свойств для преобразования числовых выражений.

  1. Многоугольники.

Угол. Острые, тупые и прямые углы. Биссектриса угла. Измерение и построение углов с помощью транспортира. Многоугольники. Периметр многоугольника.

Основная цель - познакомить учащихся с новой геометрической фигурой - углом; вести понятие биссектрисы угла; научить распознавать острые, тупые и прямые углы, строить и измерять на глаз; развить представление о многоугольнике.

  1. Делимость чисел.

Делимость натуральных чисел. Делители числа. Наибольший общий делитель и наименьшее общее кратное. Простые и составные числа. Признаки делимости на 2, 3. 5, 9, 10. Таблица простых чисел. Разложение натурального числа на простые множители. Деление с остатком

Основная цель - познакомить учащихся с простейшими понятиями, связанными с понятием делимости числа (делить, простое число, разложение на множители, признаки делимости).

7. Треугольники и четырехугольники. Прямоугольные, остроугольные и тупоугольные треугольники. Равнобедренные и равносторонние треугольники. Прямоугольник. Квадрат. Площадь. Единицы измерения площади. Площадь прямоугольника. Равенство фигур.

Основная цель - познакомить учащихся с классификацией треугольников по сторонам и углам; развить представление о прямоугольнике; сформировать понятие равных фигур, площади фигуры; научить находить площади прямоугольников и фигур, составленных из прямоугольников; познакомить с единицами измерения площадей.

8 .Дроби. Дроби. Обыкновенная дробь. Основное свойство дроби. Сокращение дробей. Приведение дроби к новому знаменателю. Сравнение дробей. Понятие и примеры случайных событий.

Основная цель - сформировать понятие дроби, познакомить учащихся с основным свойством дроби и научить применять его для преобразования дробей, научить применять его для преобразования дробей, научить сравнивать дроби; сформировать на интуитивном уровне начальные вероятностные представления.

  1. Действия с дробями.

Арифметические действия над обыкновенными дробями. Нахождение части от целого и целого по его части. Решение арифметических задач. Задачи на совместную работу.

Основная цель - научить учащихся сложению, вычитанию, умножению и делению обыкновенных и смешанных дробей; сформировать умение решать задачи на нахождение части целого и целого по его части.

  1. Многогранники.

Многогранники. Наглядные представления о пространственных телах: кубе, прямоугольном параллелепипеде, призме, пирамиде, шаре, сфере, конусе, цилиндре. Размеры объектов окружающего мира (от элементарных частиц до Вселенной). Примеры разверток.

Основная цель - познакомить учащихся с такими телами, как цилиндр, конус, шар; сформировать представление о многограннике; познакомить со способами изображения пространственных тел, в том числе научить распознавать многогранники и их элементы по проекционному чертежу; научить изображать пирамиду и параллелепипед; познакомить с понятием объема и правилом вычисления объема прямоугольного параллелепипеда.

  1. Таблицы и диаграммы.

Представление данных в виде таблиц и диаграмм. Чтение и составление таблиц и диаграмм. Чтение таблиц с двумя входами. Использование в таблицах специальных символов и обозначений. Столбчатые диаграммы. Статистические данные.

Основная цель - формирование умений извлекать необходимую информацию из несложных таблиц и столбчатых диаграмм.





Содержание обучения предмета 6 класс


1.Отношения и проценты

1.Объяснять, что показывает отношение двух чисел, использовать и понимать стандартные обороты речи со словом «отношение». Составлять отношения, объяснять содержательный смысл составленного отношения.

Объяснять, как находят отношение одноимённых и разноимённых величин, находить отношения величин. Моделировать отношения величин с помощью рисунков и чертежей. Распознавать проблемы, для решения которых требуется применение понятия отношения, в том числе проблемы из реальной жизни, и решать их.

Анализировать взаимосвязь отношений сторон квадратов, их периметров и площадей.

Объяснять, что показывает масштаб (карты, плана, чертежа, модели). Применять знания о масштабе для решения задач практического характера. Строить «копии» фигуры в заданном масштабе

2. Деление в данном отношении

Решать задачи на деление чисел и величин в данном отношении, в том числе задачи практического характера.

Анализировать, как при постоянном периметре меняется площадь прямоугольника в зависимости от отношения его сторон

3. «Главная» задача на проценты

Выражать проценты десятичной дробью. Характеризовать доли величины различными эквивалентными способами — с помощью десятичной или обыкновенной дроби, процентов.

Решать задачи на нахождение нескольких процентов величины, на увеличение (уменьшение) величины на несколько процентов, на нахождение величины по её проценту. Применять понятие процента для решения задач практического содержания, задач с реальными данными. Выполнять самоконтроль при нахождении процентов величины, используя приёмы прикидки

4. Выражение отношения в процентах

Переходить от десятичной дроби к процентам. Выражать отношение двух величин в процентах. Решать задачи на нахождение процентного отношения двух величин, в том числе с задачи с практическим контекстом, с реальными данными. Анализировать текст задачи, моделировать условие с помощью схем и рисунков, объяснять полученный результат

5. Пропорциональность величин. Решение задач с помощью пропорций.

Знать понятие прямо пропорциональных и обратно пропорциональных величин. Уметь составлять и решать пропорции.

2.Симметрия

1. Осевая симметрия

Распознавать плоские фигуры, симметричные относительно прямой. Вырезать из бумаги две фигуры, симметричные относительно прямой. Строить с помощью инструментов фигуру (отрезок, ломаную, треугольник, прямоугольник, окружность), симметричную данной относительно прямой, изображать от руки. Проводить прямую, относительно которой две фигуры симметричны. Конструировать орнаменты и паркеты, используя свойство симметрии. Формулировать свойства двух фигур, симметричных относительно прямой. Исследовать свойства фигур, симметричных относительно плоскости, используя эксперимент, наблюдение, моделирование. Описывать их свойства

2. Ось симметрии фигуры

Находить в окружающем мире плоские и пространственные симметричные фигуры. Распознавать фигуры, имеющие ось симметрии. Вырезать их из бумаги, изображать от руки и с помощью инструментов. Проводить ось симметрии фигуры. Формулировать свойства равнобедренного и равностороннего треугольников, прямоугольника, квадрата, круга, связанные с осевой симметрией. Формулировать свойства параллелепипеда, куба, конуса, цилиндра, шара, связанные с симметрией относительно плоскости. Конструировать фигуры, используя свойство симметрии, в том числе с помощью компьютерных программ

3. Центральная симметрия

Распознавать плоские фигуры, симметричные относительно точки. Строить фигуру, симметричную данной относительно точки, с помощью инструментов, достраивать, изображать от руки. Находить центр симметрии фигуры, конфигурации. Конструировать орнаменты и паркеты, используя свойство симметрии, в том числе с помощью компьютерных программ. Формулировать свойства фигур, симметричных относительно точки. Исследовать свойства фигур, имеющих ось и центр симметрии, используя эксперимент, наблюдение, измерение, моделирование. Выдвигать гипотезы, формулировать, обосновывать, опровергать с помощью контрпримеров утверждения об осевой и центральной симметрии фигур

3.Выражения, формулы, уравнения

1. О математическом языке

Обсуждать особенности математического языка. Записывать математические выражения с учётом правил синтаксиса математического языка, составлять выражения по условиям задач с буквенными данными. Использовать буквы для записи математических предложений, общих утверждений; осуществлять перевод с математического языка на естественный язык и наоборот. Иллюстрировать общие утверждения, записанные в буквенном виде, числовыми примерами

2. Буквенные выражения и числовые подстановки

Строить речевые конструкции с использованием новой терминологии (буквенное выражение, числовая подстановка, значение буквенного выражения, допустимые значения букв). Вычислять числовые значения буквенных выражений при данных значениях букв. Находить допустимые значения букв в выражении. Отвечать на вопросы задач с буквенными данными, составляя соответствующие выражения3.

3. Формулы. Вычисления по формулам

Составлять формулы, выражающие зависимости между величинами, в том числе по условиям, заданным рисунком. Вычислять по формулам, выражать из формулы одну величину через другие

4. Формулы длины окружности, площади круга и объёма шара

Находить экспериментальным путём отношение длины окружности к диаметру. Обсуждать особенности числа π; находить дополнительную информацию об этом числе. Знакомиться с формулами длины окружности, площади круга, объёма шара; вычислять по этим формулам. Вычислять размеры фигур, ограниченных окружностями и их дугами. Округлять результаты вычислений по формулам

5. Что такое уравнение

Строить речевые конструкции с использованием слов «уравнение», «корень уравнения». Проверять, является ли указанное число корнем рассматриваемого уравнения. Решать уравнения на основе зависимостей между компонентами действий. Составлять математические модели (уравнения) по условиям текстовых задач

4.Целые числа

1. Какие числа называют целыми

Обсуждать особенности математического языка. Записывать математические выражения с учётом правил синтаксиса математического языка, составлять выражения по условиям задач с буквенными данными. Использовать буквы для записи математических предложений, общих утверждений; осуществлять перевод с математического языка на естественный язык и наоборот. Иллюстрировать общие утверждения, записанные в буквенном виде, числовыми примерами

2. Сравнение целых чисел

Строить речевые конструкции с использованием новой терминологии (буквенное выражение, числовая подстановка, значение буквенного выражения, допустимые значения букв). Вычислять числовые значения буквенных выражений при данных значениях букв. Находить допустимые значения букв в выражении. Отвечать на вопросы задач с буквенными данными, составляя соответствующие выражения

3. Сложение целых чисел

Составлять формулы, выражающие зависимости между величинами, в том числе по условиям, заданным рисунком. Вычислять по формулам, выражать из формулы одну величину через другие

4. Вычитание целых чисел

Находить экспериментальным путём отношение длины окружности к диаметру. Обсуждать особенности числа π; находить дополнительную информацию об этом числе. Знакомиться с формулами длины окружности, площади круга, объёма шара; вычислять по этим формулам. Вычислять размеры фигур, ограниченных окружностями и их дугами. Округлять результаты вычислений по формулам

5. Умножение и деление целых чисел

Строить речевые конструкции с использованием слов «уравнение», «корень уравнения». Проверять, является ли указанное число корнем рассматриваемого уравнения. Решать уравнения на основе зависимостей между компонентами действий. Составлять математические модели (уравнения) по условиям текстовых задач

5.Множества. Комбинаторика

1. Понятие множества

Приводить примеры конечных и бесконечных множеств. Строить речевые конструкции с использованием теоретико-множественной терминологии и символики, переводить утверждения с математического языка на русский и наоборот. Формулировать определение подмножества, иллюстрировать понятие подмножества с помощью кругов Эйлера. Обсуждать соотношения между основными числовыми множествами. Записывать на символическом языке соотношения между множествами и приводить примерыразличных вариантових перевода на русский язык. Исследовать вопрос о числе подмножеств конечного множества

2. Операции над множествами

Формулировать определения объединения и пересечения множеств. Иллюстрировать эти понятия с помощью кругов Эйлера. Использовать схемы в качестве наглядной основы для разбиения множества на непересекающиеся подмножества. Приводить примеры классификаций из математики и из других областей знания

3. Решение задач с помощью кругов Эйлера

Проводить логические рассуждения по сюжетам текстовых задач с помощью кругов Эйлера


4. Комбинаторные задачи

Решать комбинаторные задачи с помощью перебора возможных вариантов, в том числе путём построения дерева возможных вариантов. Строить теоретико-множественные модели некоторых видов комбинаторных задач

6.Рациональные числа

1. Какие числа называют рациональными

Применять в речи и понимать терминологию, связанную с рациональными числами; распознавать натуральные, целые, дробные, положительные, отрицательные числа; характеризовать множество рациональных чисел.

Применять символьные обозначения для записи утверждений о рациональных числах, о соотношениях между подмножествами множества рациональных чисел.

Применять символьное обозначение противоположного числа, объяснять смысл записей типа (–а), упрощать соответствующие записи. Изображать рациональные числа точками координатной прямой

2. Сравнение рациональных чисел. Модуль числа

Моделировать с помощью координатной прямой отношения «больше» и «меньше» для рациональных чисел. Применять и понимать геометрический смысл понятия модуля числа, определять модуль рационального числа, использовать символьное обозначение модуля для записи и чтения утверждений. Сравнивать и упорядочивать рациональные числа

3. Действия с рациональными числами

Формулировать правила сложения двух чисел одного знака, двух чисел разных знаков, правило вычитания из одного числа другого; применять эти правила для вычисления сумм, разностей. Выполнять числовые подстановки в суммы и разности, записанные с помощью букв, находить соответствующие их значения. Проводить несложные исследования, связанные со свойствами суммы нескольких рациональных чисел (например, замена знака каждого слагаемого).

Формулировать правила нахождения произведения и частного двух чисел одного знака, двух чисел разных знаков, применять эти правила при умножении и делении рациональных чисел. Находить квадраты и кубы рациональных чисел. Вычислять значения числовых выражений, содержащих разные действия. Выполнять числовые подстановки в простейшие буквенные выражения, находить соответствующие их значения

4 Признаки делимости

Знать признаки делимости на 2, 3, 4, 5, 9, 10, 25 и уметь применять их при решении заданий

5 Простые числа. Разложение числа на простые множители НОД и НОК чисел

Знать понятие простого и составного числа. Уметь выполнять разложение составных чисел на простые множители. Уметь находить НОД и НОК чисел.

4. Что такое координаты

Приводить примеры различных систем координат в окружающем мире, определять и записывать координаты объектов в различных системах координат (шахматная доска; широта и долгота, азимут и т. д.)

5. Прямоугольные координаты на плоскости

Объяснять и иллюстрировать понятие прямоугольной системы координат на плоскости, применять в речи и понимать соответствующие термины и символику. Строить на координатной плоскости точки и фигуры по заданным координатам, определять координаты точек. Проводить несложные исследования, связанные с расположением точек на координатной плоскости

7.Многоугольники и многогранники

1. Параллелограмм

Распознавать параллелограмм на чертежах, рисунках, в окружающем мире. Изображать параллелограмм с использованием чертёжных инструментов. Моделировать параллелограмм, используя бумагу, пластилин, проволоку 
и т. д. Исследовать и описывать свойства параллелограмма, используя эксперимент, наблюдение, измерение, моделирование. Формулировать, обосновывать, опровергать с помощью контрпримеров утверждения о свойствах параллелограмма. Сравнивать свойства параллелограммов различных видов: ромба, квадрата, прямоугольника. Выдвигать гипотезы, строить логическую цепочку рассуждений о свойствах параллелограммов различных видов, объяснять их. Конструировать способы построения параллелограммов по заданным рисункам, осуществлять самоконтроль, проверяя соответствие полученного изображения заданному

2. Площади

Изображать равносоставленные фигуры, определять их площади. Моделировать геометрические фигуры из бумаги (перекраивать прямоугольник в параллелограмм, достраивать треугольник до параллелограмма). Сравнивать фигуры по площади. Формулировать свойства равносоставленных фигур. Составлять формулы для вычисления площади параллелограмма, площади прямоугольного треугольника. Выполнять измерения и вычислять площади параллелограмма и треугольника. Использовать компьютерное моделирование и эксперимент для изучения свойств геометрических фигур. Строить логическую цепочку рассуждений о равновеликих фигурах. Решать задачи на нахождение площадей параллелограммов и треугольников

3. Призма

Распознавать призмы на чертежах, рисунках, в окружающем мире. Называть призмы. Копировать призмы, изображённые на клетчатой бумаге, осуществлять самоконтроль, проверяя соответствие полученного изображения заданному. Моделировать призмы, используя бумагу, пластилин, проволоку и т. д., изготавливать из развёрток.

Определять взаимное расположение граней, рёбер, вершин призмы. Исследовать свойства призмы, используя эксперимент, наблюдение, измерение, моделирование. Описывать свойства призмы, используя соответствующую терминологию. Формулировать утверждения о свойствах призмы, опровергать утверждения с помощью контрпримеров. Строить логическую цепочку рассуждений о свойствах призм. Составлять формулы, связанные с линейными, плоскими и пространственными характеристиками призмы. Моделировать из призм другие многогранники

8.Повторение курса 6 класса

Действия с рациональными числами

Уметь находить значения числовых выражений

Решение уравнений

Уметь решать уравнения с одной переменной

Решение разных задач

Уметь решать задачи разными способами









Алгебра,7 класс

Обучающийся научится:

  • работать с математическим текстом (структу­рирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику; развить способности обосновывать суждения, проводить классификацию;

  • владеть базовым понятийным аппаратом: иметь представление о выражении, уравнении, системе уравнений и способах преобразования и решения их; о функции и графике, степени с натуральным показателем; об основных гео­метрических объектах (точка, прямая (параллельные и перпендикулярные), углы (смежные, вертикальные, образованные параллельными прямыми и секущей), треугольники(свойства равнобедренного и прямоугольного треугольников, признаки равенства треугольников формирования представлений о статистических за­кономерностях в реальном мире и различных способах их изучения;

  • выполнять арифметические преобразования ра­циональных выражений, применять их для решения учебных математических задач и задач, возникающих в смежных учеб­ных предметах;

  • бегло и уверенно выполнять арифметические действия с рациональными числами;осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления;

  • выполнять тождественные преобразования выражений: приведение подобных слагаемых, раскрытие скобок со знаком «плюс» или «минус» пред скобками;

  • решать уравнения с одним неизвестным и применять уравнения к решению текстовых задач; решать системы линейных уравнений;

  • строить графики функций , (b≠0), ; понимать как влияет знак коэффициента k на расположение в координатной плоскости графика функции , где k≠0, как зависит от значений k и b взаимное расположение графиков двух функций вида ; видеть эту зависимость, используя математическую лабораторию Живой Математики;

  • выполнять основные действия со степенями с натуральным показателем, с многочленами; выполнять разложение многочленов на множители;

  • понимать графическую интерпретацию решения уравнений и систем уравнений;

  • понимать содержательный смысл важнейших свойств функции; по графику функции отвечать на вопросы, касающиеся её свойств; строить графики функций – линейной, квадратичной функции и функции


Обучающийся получит возможность научиться :

использовать приобретенные знания, умения, навыки в практической деятельности и повседневной жизни для:

    • решения несложных практических расчетных задач, в том числе с использованием при необходимости справочной литературы, калькулятора, компьютера;

    • устной прикидки, и оценки результата вычислений, проверки результата вычислений выполнением обратных действий;

    • моделирования практических ситуаций и исследовании построенных моделей с использованием аппарата алгебры;

    • интерпретации графиков реальных зависимостей между величинами.




Алгебра, 8 класс


Обучающийся научится:

  • существо понятия математического доказательства; примеры доказательств;

  • существо понятия алгоритма; примеры алгоритмов;

  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

  • как потребности практики привели математическую науку к необходимости расширения понятия числа;

  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

  • Обучающийся получит возможность научиться:

  • выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители;

  • выполнять тождественные преобразования рациональных выражений;

  • применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;

  • решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним;

  • решать линейные неравенства с одной переменной и их системы;

  • находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;

  • определять свойства функции по ее графику; применять графически представления при решении уравнений, систем, неравенств;

  • описывать свойства изученных функций, строить их графики;

  • использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;

  • моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;

  • описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;

интерпретации графиков реальных зависимостей









Геометрия,7 класс

 Обучающийся научится:



распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры (точка, прямая, отрезок, луч, угол, треугольник, окружность, шар, сфера, параллелепипед, пирамида и др.);

распознавать виды углов, виды треугольников;

определять по чертежу фигуры её параметры (длина отрезка, градусная мера угла, элементы треугольника, периметр треугольника и т.д.);

распознавать развертки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;



Обучающийся получит возможность научиться :

углублять и развивать представления о плоских и пространственных геометрических фигурах (точка, прямая, отрезок, луч, угол, треугольник, окружность, шар, сфера, параллелепипед, призма и др.);

применять понятия развертки для выполнения практических расчетов.





Геометрия,8 класс

Обучающийся научится:

  • пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;

  • распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;

  • находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0 до 180 градусов, применяя определения, свойства и признаки фигур и их элементов, отношения фигур (равенство, сравнение);

  • решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств;

  • решать простейшие задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки;

  • решать простейшие планиметрические задачи в пространстве;

  • использовать свойства измерения длин и углов при решении задач на нахождение длины отрезка и градусной меры угла;

  • вычислять длины линейных элементов треугольника и их углы;

  • вычислять периметры треугольников;

  • решать задачи на доказательство с использованием признаков равенства треугольников и признаков параллельности прямых;

  • решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства);



Обучающийся получит возможность научиться :

  • вычислять градусные меры углов треугольника и периметров треугольников;

  • приобрести опыт применения алгебраического аппарата при решении задач на вычисление;

  • овладеть базовым понятийным аппаратом по основным разделам содержания; представление об основных изучаемых понятиях ( число, геометрическая фигура) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;

  • работать с геометрическим текстом( анализировать , извлекать необходимую информацию), точно и грамотно выражать свои мысли в устной и письменной речи с применением математической терминологии и символики, использовать различные языки математики, проводить классификации, логические обоснования, доказательства математических утверждений;

  • овладеть навыками устных, письменных, инструментальных вычислений;

  • овладеть геометрическим языком, использовать его для описания предметов окружающего мира, развития пространственных представлений и изобразительных умений, приобрести навыкы геометрических построений;

  • усвоить систематические знания о плоских фигурах и их свойствах, а также на наглядном уровне — о простейших пространственных телах, применять систематические знания о них для решения геометрических и практических задач;

  • измерять длины отрезков, величины углов, использовать формулы для вычисления периметров, площадей и объемов геометрических фигур;

  • применять изученные понятия, результаты, методы для решения задач практического характера и задач из сложных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера.

  • овладеть методами решения задач на вычисления и доказательства: методом от противного, методом перебора вариантов;

  • приобрести опыт применения алгебраического аппарата при решении геометрических задач;

  • овладеть традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство и исследование;

  • приобрести опыт исследования свойств планиметрических фигур с помощью компьютерных программ.




СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА


Изучение математики в 5 и 6 классе отводит 5 уроков в неделю в течение каждого года обучения, 34 учебных недель, 170 уроков за учебный год, 340 уроков за курс. Количество тематических контрольных работ/ административных:


Темы

Содержание курса 5 класс

час

Кр/пр

Линии

Линии на плоскости. Прямая, отрезок. Длина отрезка. Окружность.

Развить представление о линии, продолжить формирование графических навыков и измери­тельных умений.


7

1

Натуральные числа

Натуральные числа и нуль. Сравнение. Округление. Пе­ребор возможных вариантов.

Систематизировать и развить зна­ния учащихся о натуральных числах, научить читать и записывать большие числа, сравнивать и округлять, изображать числа точками на координатной прямой, сформировать первоначальные навыки решения комбинатор­ных задач с помощью перебора возможных вариантов.

12

1

Действия с натуральными числами

Арифметические действия с натуральными числами. Свойства сложения и умножения. Квадрат и куб числа. Числовые выражения. Решение арифметических задач.

Закрепить и развить навыки ариф­метических действий с натуральными числами, ознакомить с элементарными приемами прикидки и оценки результатов вычислений, углубить навыки решения текстовых задач арифметическим способом.

25

1

Использование свойств действий при вычислениях

Свойства арифметических действий.

Расширить представление учащих­ся о свойствах арифметических действий, продемонстриро­вать возможность применения свойств для преобразования числовых выражений.

12

1

Углы и многоугольники

Угол. Острые, тупые и прямые углы. Измерение и по­строение углов с помощью транспортира. Многоугольники.

Познакомить учащихся с новой геометрической фигурой — углом; ввести понятие биссек­трисы угла; научить распознавать острые, тупые и прямые углы, строить и измерять на глаз; развить представление о многоугольнике.

7

1

Делимость чисел

Делители числа. Простые и составные числа. Признаки делимости. Таблица простых чисел. Разложение числа на простые множители.

Познакомить учащихся с простей­шими понятиями, связанными с понятием делимости чи­сел (делитель, простое число, разложение на множители, признаки делимости).

15

1

Треугольники и четырехугольники

Треугольники и их виды. Прямоугольник. Площадь. Еди­ницы площади. Площадь прямоугольника. Равенство фигур.

Познакомить учащихся с класси­фикацией треугольников по сторонам и углам; развить пред­ставления о прямоугольнике; сформировать понятие равных Фигур, площади фигуры; научить находить площади прямоугольников и фигур, составленных из прямоугольников; по­знакомить с единицами измерения площадей.


9

1

Дроби

Обыкновенная дробь. Основное свойство дроби. Сокра­щение дробей. Приведение дроби к новому знаменателю. Сравнение дробей.

Сформировать понятие дроби, по­знакомить учащихся с основным свойством дроби и на­учить применять его для преобразования дробей, научить сравнивать дроби; сформировать на интуитивном уровне начальные вероятностные представления.

20

1

Действия с дробями

Арифметические действия над обыкновенными дробя­ми. Нахождение дроби числа и числа по его дроби. Реше­ние арифметических задач.

Научить учащихся сложению, вы­читанию, умножению и делению обыкновенных и смешан­ных дробей; сформировать умение решать задачи на на­хождение части целого и целого по его части.

35

2

Многогранники

Многогранники. Прямоугольный параллелепипед. Куб. Пирамида. Развертки.

Познакомить учащихся с такими телами, как цилиндр, конус, шар; сформировать пред­ставление о многограннике; познакомить со способами изображения пространственных тел, в том числе научить распознавать многогранники и их элементы по проекцион­ному чертежу; научить изображать параллелепипед и пи­рамиду; познакомить с понятием объема и правилом вы­числения объема прямоугольного параллелепипеда.

10

1

Таблицы и диаграммы

Чтение таблиц с двумя входами. Использование в табли­цах специальных символов и обозначений. Столбчатые диа­граммы.

Формирование умений извлекать необходимую информацию из несложных таблиц и столб­чатых диаграмм.

8


Повторение

Обобщить и систематизировать материал, изученный в 5 классе

10




№ п/п

Тема

Количество часов

1

1. Линии


7

2

Натуральные числа

12

3

Действия с натуральными числами

25

4

Использование свойств действий при вычислениях


12

5

Многоугольники

7

6

Делимость чисел


15

7

Треугольники и четырехугольники

9

8

ДРОБИ

20

9

Действия с дробями

35

10

Многогранники

10

11

Таблицы и диаграммы

8

12

повторение

10

Всего

170











Темы

Содержание курса 6 класс

час

Кр/пр

Обыкновенные дроби. Повторение

Арифметические действия над дробями. Основные задачи на дроби. Проценты. Нахождение процента величины. Чтение и составление таблиц. Столбчатые и круговые диаграммы. Закрепить и развить навыки действий с обыкновенными дробями, познакомить учащихся с понятием процента, сформировать понимание часто встречающихся оборотов речи со словом «процент»; познакомить учащихся со способами представления информации в виде таблиц и диаграмм.

18

1

Прямые на плоскости и в пространстве

Две пересекающиеся прямые. Параллельные прямые. Построение параллельных и перпендикулярных прямых. Расстояние. Создать у учащихся зрительные образы всех основных конфигураций, связанных с взаимным расположением прямых; научить находить расстояние от точки до прямой и между двумя параллельными прямыми; научить находить углы, образованные двумя пересекающимися прямыми.

6

1

Десятичные дроби.

Десятичная дробь. Чтение и запись десятичных дробей. Обращение обыкновенной дроби в десятичную. Сравнение десятичных дробей. Решение арифметических задач. Ввести понятие десятичной дроби, выработать навыки чтения, записи и сравнения десятичных дробей. Расширить представления учащихся о возможности записи чисел в различных эквивалентных формах.

9

1

Действия с десятичными дробями

Сложение, вычитание, умножение и деление десятичных дробей. Решение арифметических задач. Округление десятичных дробей. Сформировать навыки вычислений с десятичными дробями, развить навыки прикидки и оценки.

31

1

Окружность.

Взаимное расположение прямой и окружности, двух окружностей. Шар, сфера. Построение треугольников.Создать у учащихся зрительные образы всех основных конфигураций, связанных с взаимным расположением двух окружностей, прямой и окружности; научить выполнять построение треугольника по заданным элементам; познакомить с новыми геометрическими телами – шаром, цилиндром, конусом – и ввести связанную с ними терминологию

8

1

Отношения и проценты

Проценты. Основные задачи на проценты.Ввести понятие отношения, продолжить изучение процентов, развить навыки прикидки и оценки.

14

1

Симметрия.

Осевая симметрия. Ось симметрии фигуры. Центральная симметрия. Зеркальная симметрия.Дать представление о симметрии в окружающем мире; познакомить учащихся с основными видами симметрии на плоскости и в пространстве, расширить представления об известных фигурах, познакомив со свойствами, связанными с симметрией; показать возможности использования симметрии при решении различных задач и построениях; развить пространственное и конструктивное мышление.

8

1

Буквы и формулы

Применение букв для записи математических выражений и предложений. Формулы. Вычисление по формулам. Длина окружности и площадь круга. Корень уравнения. Сформировать первоначальные навыки использования букв для обозначения чисел в записи математических выражений и предложений.

15

1

Целые числа

Целые числа. Сравнение целых чисел. Арифметические действия с целыми числами. Множества, операции объединения и пересечения.Мотивировать введение положительных и отрицательных чисел , сформировать умение выполнять действия с целыми числами, познакомить с понятием множества и операциями объединения и пересечения множеств.

14

1

Комбинаторика. Случайные события.

Решение комбинаторных задач. Применение правила умножения в комбинаторике. Эксперименты со случайными исходами. Частота и вероятность случайного события.Развить умения решать комбинаторные задачи методом полного перебора вариантов, познакомить с приёмом решения комбинаторных задач умножением, продолжить формирование представлений о случайных событиях, ознакомить с методикой проведения случайных экспериментов для оценки возможности наступления случайных событий.

9


Рациональные числа

Рациональные числа. противоположные числа. Модуль числа. Сравнение чисел. Изображение чисел точками на прямой. Арифметические действия над рациональными числами. Свойства арифметических действий. Решение арифметических задач. Прямоугольная система координат на плоскости, абсцисса и ордината точки.Выработать прочные навыки действий с положительными и отрицательными числами. Сформировать представление о понятии системы координат, познакомить с прямоугольной системой координат на плоскости.

16

1

Многоугольники и многогранники

Сумма углов треугольника. Параллелограмм. Площади. Правильные многоугольники. Обобщить и расширить знания о треугольниках и четырёхугольниках, познакомить с новыми геометрическими объектами – параллелограммом и призмой.

9

1

Повторение

Обобщить и систематизировать материал, изученный в 6 классе

13








главы

Тема раздела (модуль)

Количество часов

1

Дроби и проценты

18

2

Прямые на плоскости и в пространстве

6

3

Десятичные дроби

9

4

Действия с десятичными дробями

31

5

Окружность

8

6

Отношения и проценты

14

7

Симметрия

8

8

Выражения, формулы, уравнения

15

9

Целые числа

14

10

Множества. Комбинаторика.

9

11

Рациональные числа

16

12

Многоугольники и многогранники

9


Повторение

13









7 класс (алгебра)



Преподавание данного курса осуществляется в соответствии с составленной рабочей программой, на основе примерной программы основного общего образования по математике, учебника «Алгебра, 7-8» Ю.Н. Макарычева, Н.Г. Миндюка, К.И. Нешкова, С.Б. Суворовой под редакцией С.А. Теляковского и методических рекомендаций авторов учебника.



Повторение (3 часа)

Выражения, тождества, уравнения (18часов) Числовые и буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Допустимые значения переменных, входящих в алгебраические выражения. Сравнение значений выражений. Свойства действий над числами. Равенство буквенных выражений. Тождество, доказательство тождеств. Тождественные преобразования выражений. Уравнение с одной переменной. Корень уравнения. Линейное уравнение. Решение текстовых задач с помощью уравнения.

Функции (11часов) Понятие функции. Область определения функции, область значения функции. Способы задания функции. Вычисление значений функции по формуле. График функции. Прямая пропорциональность, ее график. Линейная функция, ее график, геометрический смысл коэффициентов k и b. Взаимное расположение графиков двух линейных функций.

Степень и ее свойства (12 часов) Определение степени с натуральным показателем. Действия со степенями: умножение, деление степеней, возведение в степень произведения и степени. Степень с нулевым показателем. Одночлен и его стандартный вид, степень одночлена. Умножение одночленов. Возведение одночлена в степень. Функции у=х2 , у=х3 , их графики, свойства этих функций.

Многочлены (19 часов) Многочлен и его стандартный вид. Степень многочлена. Сложение и вычитание многочленов. Умножение одночлена на многочлен. Вынесение общего множителя за скобку. Умножение многочлена на многочлен. Разложение многочлена на множители способом группировки.

Формулы сокращенного умножения (19 часов) Квадрат суммы и квадрат разности двух выражений. Куб суммы и куб разности двух выражений. Разложение на множители с помощью формул квадрата суммы и квадрата разности двух выражений. Умножение разности двух выражений и их суммы. Формула разности квадратов, разложение на множители с помощью формулы разности квадратов. Формула суммы кубов и разности кубов. Разложение на множители с помощью этих формул. Преобразование целого выражения в многочлен. Применение различных способов для разложения многочленов на множители. Возведение двучлена в степень.

Системы линейных уравнений (14часов) Уравнение с двумя переменными, решение уравнения с двумя переменными. Система уравнений, решение системы. Система двух линейных уравнений с двумя переменными; решение способом подстановки и способом сложения. Примеры решения уравнений в целых числах. График линейного уравнения. Графический способ решения систем. Число решений системы двух линейных уравнений с двумя неизвестными. Решение текстовых задач с помощью систем.

Повторение.(6 часов) Формулы сокращенного умножения. Система уравнений. Способ подстановки. Способ сложения. Решение текстовых задач.

№ темы

Название темы

Количество часов

1

Повторение

3

2.

Выражения, тождества, уравнения

18

4.

Функции

11

5.

Степень с натуральным показателем

12

6.

Многочлены

19

7.

Формулы сокращенного умножения

19

8.

Системы линейных уравнений

14

12.

Итоговое повторение курса 7класса

6









7 класс (геометрия)

Начальные геометрические сведения 11ч. Возникновение геометрии из практики. Геометрические фигуры и тела. Равенство в геометрии. Точка, прямая и плоскость. Понятие о геометрическом месте точек. Расстояние. Отрезок, луч. Ломаная. Угол. Прямой угол. Острые и тупые углы. Вертикальные и смежные углы. Биссектриса угла и ее свойства.

Треугольник 17 ч. Прямоугольные, остроугольные и тупоугольные треугольники. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренные и равносторонние треугольники; свойства и признаки равнобедренного треугольника. Признаки равенства треугольников. Неравенство треугольника. Сумма углов треугольника. Внешние углы треугольника. Зависимость междувеличинам сторон и углов треугольника

Параллельные прямые 13 ч. Параллельные и пересекающиеся прямые. Перпендикулярность прямых. Теоремы о параллельности и перпендикулярности прямых. Свойство серединного перпендикуляра к отрезку. Перпендикуляр и наклонная к прямой

Соотношения между сторонами и углами треугольника 19ч. . Зависимость между величинами сторон и углов треугольника .Теорема о соотношениях между сторонами и углами треугольника. Прямоугольные треугольники. Свойства прямоугольных треугольников. Признаки равенства прямоугольных треугольников. Построение треугольника по трем сторонам. Построение треугольника по трем элементам.

Повторение 8ч. Признаки параллельности двух прямых.Сумма углов треугольника. Признаки равенства треугольников. Медианы, высоты, биссектрисы треугольника. Решение задач.

Содержание тем учебного курса



№ раздела, темы Наименование раздел, тем Количество часов
Всего Контрольные работы
2 Начальные геометрические сведения 11 1
3 Треугольники 17 1
4 Параллельные прямые 13 1
5 Соотношения между сторонами и углами треугольника 19 2
6 Повторение 8













Содержание обучения алгебра8 класс

Глава 1. Рациональные дроби (23 часа)

Рациональная дробь. Основное свойство дроби, сокращение дробей. Тождественные преобразования рациональных выражений. Функция у = и её график.

Цель: выработать умение выполнять тождественные преобразования рациональных выражений.

Так как действия с рациональными дробями существенным образом опираются на действия с многочленами, то в начале темы необходимо повторить с обучающимися преобразования целых выражений.

Главное место в данной теме занимают алгоритмы действий с дробями. Учащиеся должны понимать, что сумму, разность, произведение и частное дробей всегда можно представить в виде дроби. Приобретаемые в данной теме умения выполнять сложение, вычитание, умножение и деление дробей являются опорными в преобразованиях дробных выражений. Поэтому им следует уделить особое внимание. Нецелесообразно переходить к комбинированным заданиям на все действия с дробями прежде, чем будут усвоены основные алгоритмы. Задания на все действия с дробями не должны быть излишне громоздкими и трудоемкими.

При нахождении значений дробей даются задания на вычисления с помощью калькулятора. В данной теме расширяются сведения о статистических характеристиках. Вводится понятие среднего гармонического ряда положительных чисел.

Изучение темы завершается рассмотрением свойств графика функции

у =.

Глава 2. Квадратные корни (17 часов)

Понятие об иррациональных числах. Общие сведения о действительных числах. Квадратный корень. Понятие о нахождении приближенного значения квадратного корня. Свойства квадратных корней. Преобразования выражений, содержащих квадратные корни. Функция у = , её свойства и график.

Цель: систематизировать сведения о рациональных числах и дать представление об иррациональных чис­лах, расширив тем самым понятие о числе; выработать умение выполнять преобразования выражений, содержащих квадратные корни.

В данной теме учащиеся получают начальное представление о понятии действительного числа. С этой целью обобщаются известные обучающимся сведения о рациональных числах. Для введе­ния понятия иррационального числа используется интуитивное представление о том, что каждый отрезок имеет длину и потому каждой точке координатной прямой соответствует некоторое число. Показывается, что существуют точки, не имеющие рациональных абсцисс.

При введении понятия корня полезно ознакомить обучающихся с нахождением корней с помощью калькулятора.

Основное внимание уделяется понятию арифметического квадратного корня и свойствам арифметических квадратных корней. Доказываются теоремы о корне из произведения и дроби, а также тождество =, которые получают применение в преобразованиях выражений, содержащих квадратные корни. Специальное внимание уделяется освобождению от иррациональности в знаменателе дроби в выражениях вида , . Умение преобразовывать выражения, содержащие корни, часто используется как в самом курсе алгебры, так и в курсах геометрии, алгебры и начал анализа.

Продолжается работа по развитию функциональных представлений обучающихся. Рассматриваются функция у=, её свойства и график. При изучении функции у=, показывается ее взаимосвязь с функцией у = х2, где х ≥ 0.

Глава 3. Квадратные уравнения (24 час)

Квадратное уравнение. Формула корней квадратного уравнения. Решение рациональных уравнений. Решение задач, приводящих к квадратным уравнениям и простейшим рациональным уравнениям.

Цель: выработать умения решать квадратные уравнения и простейшие рациональные уравнения и применять их к решению задач.

В начале темы приводятся примеры решения неполных квадратных уравнений. Этот материал систематизируется. Рассматриваются алгоритмы решения неполных квадратных уравнений различного вида.

Основное внимание следует уделить решению уравнений вида ах2 + bх + с = 0, где, а 0, с использованием формулы корней. В данной теме учащиеся знакомятся с формулами Виета, выражающими связь между корнями квадратного уравнения и его коэффициентами. Они используются в дальнейшем при доказательстве теоремы о разложении квадратного трехчлена на линейные множители.

Учащиеся овладевают способом решения дробных рациональных уравнений, который состоит в том, что решение таких уравнений сводится к решению соответствующих целых уравнений с последующим исключением посторонних корней.

Изучение данной темы позволяет существенно расширить аппарат уравнений, используемых для решения текстовых задач.

Глава 4. Неравенства (18 часов)

Числовые неравенства и их свойства. Почленное сложение и умножение числовых неравенств. Погрешность и точность приближения. Линейные неравенства с одной переменной и их системы.

Цель: ознакомить обучающихся с применением неравенств для оценки значений выражений, выработать умение решать линейные неравенства с одной переменной и их системы.

Свойства числовых неравенств составляют ту базу, на которой основано решение линейных неравенств с одной переменной. Теоремы о почленном сложении и умножении неравенств находят применение при выполнении простейших упражнений на оценку выражений по методу границ. Вводятся понятия абсолютной Погрешности и точности приближения, относительной погрешности.

Умения проводить дедуктивные рассуждения получают развитие, как при доказательствах указанных теорем, так и при выполнении упражнений на доказательства неравенств.

В связи с решением линейных неравенств с одной переменной дается понятие о числовых промежутках, вводятся соответствующие названия и обозначения. Рассмотрению систем неравенств с одной переменной предшествует ознакомление обучающихся с понятиями пересечения и объединения множеств.

При решении неравенств используются свойства равносильных неравенств, которые разъясняются на конкретных примерах. Особое внимание следует уделить отработке умения решать простейшие неравенства вида ах b, ах b, остановившись специально на случае, когда, а0.

В этой теме рассматривается также решение систем двух линейных неравенств с одной переменной, в частности таких, которые записаны в виде двойных неравенств.

Глава 5. Степень с целым показателем. Элементы статистики (14 часов)

Степень с целым показателем и ее свойства. Стандартный вид числа. Начальные сведения об организации статистических исследований.

Цель: выработать умение применять свойства степени с целым показателем в вычислениях и преобразованиях, сформировать начальные представления о сборе и группировке статистических данных, их наглядной интерпретации.

В этой теме формулируются свойства степени с целым показателем. Метод доказательства этих свойств показывается на примере умножения степеней с одинаковыми основаниями. Дается понятие о записи числа в стандартном виде. Приводятся примеры использования такой записи в физике, технике и других областях знаний.

Учащиеся получают начальные представления об организации статистических исследований. Они знакомятся с понятиями генеральной и выборочной совокупности. Приводятся примеры представления статистических данных в виде таблиц частот и относительных частот. Обучающимся предлагаются задания на нахождение по таблице частот таких статистических характеристик, как среднее арифметическое, мода, размах. Рассматривается вопрос о наглядной интерпретации статистической информации. Известные обучающимся способы наглядного представления статистических данных с помощью столбчатых и круговых диаграмм расширяются за счет введения таких понятий, как полигон и гистограмма.

6. Повторение (6 часов)

Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс алгебры 8 класса.



Содержание тем учебного курса

Название темы

Количество часов

Контрольных работ

1

Рациональные дроби

23 ч

2

2

Квадратные корни

17 ч

2

3

Квадратные уравнения

24 ч

2

4

Неравенства

18 ч

1

5

Степень с целым показателем. Элементы статистики

14 ч

1

6

Решение задач на повторение

6 ч

1


Итого

102

9






8 класс (геометрия)

Четырехугольники. Многоугольник, выпуклый многоугольник, четырехугольник. Сумма углов выпуклого многоугольника. Вписанные и описанные многоугольники. Правильные многоугольники. Параллелограмм, его свойства и признаки. Прямоугольник, квадрат, ромб, их свойства и признаки. Трапеция, средняя линия трапеции; равнобедренная трапеция. Осевая и центральна симметрия.


Площадь. Понятие площади многоугольника. Площади прямоугольника, параллелограмма, треугольника, трапеции. Теорема Пифагора.


Подобные треугольники. Подобные треугольники. Признаки подобия треугольников. Применение подобия к доказательству теорем и решению задач. Синус, косинус и тангенс острого угла прямоугольного треугольника.


Окружность. Взаимное расположение прямой и окружности. Касательная к окружности, ее свойство и признак. Центральный, вписанный углы; величина вписанного угла; двух окружностей; равенство касательных, проведенных из одной точки. Метрические соотношения в окружности: свойства секущих, касательных, хорд. Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Вписанные и описанные четырехугольники. Вписанные и описанные окружности правильного многоугольника.


Содержание тем учебного курса


§

Название темы

Кол-во

час


Повторение курса геометрии 7 класса

2


Глава V. Четырехугольники (14ч)


1

Многоугольники

2

2

Параллелограмм и трапеция

6

3

Прямоугольник. Ромб. Квадрат

4

4

Решение задач

1


Контрольная работа №1

1


Глава VI. Площадь (14 ч)


1

Площадь многоугольника

2

2

Площади параллелограмма, треугольника и трапеции

6

3

Теорема Пифагора

3

4

Решение задач

2


Контрольная работа №2

1


Глава VII. Подобные треугольники (19 ч)


1

Определение подобных треугольников

2

2

Признаки подобия треугольников

5


Контрольная работа №3

1

3

Применение подобия к доказательству теорем и решению задач

7

4

Соотношения между сторонами и углами прямоугольного треугольника

3


Контрольная работа №4

1


Глава VIII. Окружность (17 ч)


1

Касательная к окружности

3

2

Центральные и вписанные углы

4

3

Четыре замечательные точки треугольника

3

4

Вписанная и описанная окружности

4


Решение задач

2


Контрольная работа № 5

1


Повторение. Решение задач


4


ИТОГО

70




1Здесь и далее – распознавать конкретные примеры общих понятий по характерным признакам, выполнять действия в соответствии с определением и простейшими свойствами понятий, конкретизировать примерами общие понятия.

2 Здесь и далее – знать определение понятия, уметь пояснять его смысл, уметь использовать понятие и его свойства при проведении рассуждений, доказательств, решении задач.

-80%
Курсы повышения квалификации

Управление образовательным процессом

Продолжительность 72 часа
Документ: Удостоверение о повышении квалификации
4000 руб.
800 руб.
Подробнее
Скачать разработку
Сохранить у себя:
Рабочая учебная программа (109.42 KB)

Комментарии 0

Чтобы добавить комментарий зарегистрируйтесь или на сайт