Меню
Разработки
Разработки  /  Математика  /  Подготовка к ЕГЭ  /  11 класс  /  Презентация по математике "Подготовка к ЕГЭ. Задачи на совместную работу"

Презентация по математике "Подготовка к ЕГЭ. Задачи на совместную работу"

В презентации рассмотрено 8 задач с решением на совместную работу.
27.06.2015

Описание разработки

Задачи на работу решаются с помощью одной-единственной формулы:

A = p*t

A - работа,

t - время,

P - производительность.

Правила решения задач на работу.

1. А = р∙t, из этой формулы легко найти t или p.

Презентация по математике Подготовка к ЕГЭ. Задачи на совместную работу

2. Если объем работы не важен в задаче и нет никаких данных, позволяющих его найти — работа принимается за единицу. Построен дом (один), покрашен забор (один), наполнен резервуар. А вот если речь идет о количестве кирпичей, количестве деталей, литрах воды —  работа как раз и равна этому количеству.

3. Если трудятся двое рабочих (два экскаватора, два мастера, Даша и Маша...) или трое (не важно) — их производительности складываются. Очень логичное правило.

4. В качестве переменной х удобно взять (в абсолютном большинстве задач) именно производительность.

Задача 1.

Заказ на 240 деталей первый рабочий выполняет на 1 час быстрее, чем второй. Сколько деталей в час делает второй рабочий, если известно, что первый за час делает на 1 деталь больше?

Первый рабочий выполнил заказ на час быстрее. Следовательно, времени он затрачивает на 1 час меньше, чем второй, то есть t1  на 1 меньше, чем t2, значит...

Содержимое разработки

Подготовка к егэ Задачи на совместную работу

Подготовка к егэ

Задачи на совместную работу

Задачи на работу решаются с помощью одной-единственной формулы:    A — работа, t — время, P - производительность

Задачи на работу решаются с помощью одной-единственной формулы:

A — работа,

t — время,

P - производительность

Правила решения задач на работу 1. А = р∙t, из этой формулы легко найти t или p. 2. Если объем работы не важен в задаче и нет никаких данных, позволяющих его найти — работа принимается за единицу. Построен дом (один), покрашен забор (один), наполнен резервуар. А вот если речь идет о количестве кирпичей, количестве деталей, литрах воды —  работа как раз и равна этому количеству. 3. Если трудятся двое рабочих (два экскаватора, два мастера, Даша и Маша...) или трое (не важно) — их производительности складываются. Очень логичное правило. 4. В качестве переменной х удобно взять (в абсолютном большинстве задач) именно производительность.

Правила решения задач на работу

  • 1. А = р∙t, из этой формулы легко найти t или p.
  • 2. Если объем работы не важен в задаче и нет никаких данных, позволяющих его найти — работа принимается за единицу. Построен дом (один), покрашен забор (один), наполнен резервуар. А вот если речь идет о количестве кирпичей, количестве деталей, литрах воды —  работа как раз и равна этому количеству.
  • 3. Если трудятся двое рабочих (два экскаватора, два мастера, Даша и Маша...) или трое (не важно) — их производительности складываются. Очень логичное правило.
  • 4. В качестве переменной х удобно взять (в абсолютном большинстве задач) именно производительность.
Задача 1 Заказ на 240 деталей первый рабочий выполняет на 1 час быстрее, чем второй. Сколько деталей в час делает второй рабочий, если известно, что первый за час делает на 1 деталь больше?

Задача 1

  • Заказ на 240 деталей первый рабочий выполняет на 1 час быстрее, чем второй. Сколько деталей в час делает второй рабочий, если известно, что первый за час делает на 1 деталь больше?
Первый рабочий выполнил заказ на   час быстрее. Следовательно, времени он затрачивает на 1 час меньше, чем второй, то есть t 1     на 1   меньше, чем t 2 ,   значит Очевидно, производительность рабочего не   может быть отрицательной величиной.   Значит, отрицательный корень не   подходит . Ответ: 15

Первый рабочий выполнил заказ на   час быстрее. Следовательно, времени он затрачивает на 1 час меньше, чем второй, то есть t 1     на 1   меньше, чем t 2 ,   значит

Очевидно, производительность рабочего не   может быть отрицательной величиной.   Значит, отрицательный корень не   подходит .

Ответ: 15

Задача 2 На изготовление 40 деталей первый рабочий затрачивает на 6 часов  меньше, чем второй рабочий на изготовление 70 таких же деталей. Известно, что первый рабочий за час делает на 3 детали больше, чем второй. Сколько деталей в час делает второй рабочий?

Задача 2

  • На изготовление 40 деталей первый рабочий затрачивает на 6 часов  меньше, чем второй рабочий на изготовление 70 таких же деталей. Известно, что первый рабочий за час делает на 3 детали больше, чем второй. Сколько деталей в час делает второй рабочий?

Сравнение будем проводить по времени. Сказано, что первый затрачивает на 6 часов меньше, чем второй. Значит: Ответ: 7
  • Сравнение будем проводить по времени. Сказано, что первый затрачивает на 6 часов меньше, чем второй. Значит:

Ответ: 7

Задача 3 Первая труба пропускает на 4 литра воды в минуту меньше, чем вторая. Сколько литров воды в минуту пропускает первая труба, если резервуар объемом 192 литра она заполняет на 4 минуты дольше, чем вторая труба?

Задача 3

  • Первая труба пропускает на 4 литра воды в минуту меньше, чем вторая. Сколько литров воды в минуту пропускает первая труба, если резервуар объемом 192 литра она заполняет на 4 минуты дольше, чем вторая труба?
Первая труба заполняет резервуар на 4 минуты дольше, чем вторая. То есть времени уходит больше Ответ: 12
  • Первая труба заполняет резервуар на 4 минуты дольше, чем вторая. То есть времени уходит больше

Ответ: 12

Задача 4 Каждый из двух рабочих одинаковой квалификации может выполнить заказ за 19 часов. Через 1 час после того, как один из них приступил к выполнению заказа, к нему присоединился второй рабочий, и работу над заказом они довели до конца уже вместе. Сколько часов потребовалось на выполнение всего заказа? Сразу отметим, что производительность каждого рабочего 1/19 (заказа в час). Заказ это работа, она равна 1.

Задача 4

  • Каждый из двух рабочих одинаковой квалификации может выполнить заказ за 19 часов. Через 1 час после того, как один из них приступил к выполнению заказа, к нему присоединился второй рабочий, и работу над заказом они довели до конца уже вместе. Сколько часов потребовалось на выполнение всего заказа?

Сразу отметим, что производительность каждого рабочего

1/19 (заказа в час). Заказ это работа, она равна 1.

Сумма сделанных ими объёмов работы составляет всю работу, равную 1. Совместно рабочие работали 9 часов. Значит, на весь заказ ушло 9 + 1 = 10 часов . Ответ: 10
  • Сумма сделанных ими объёмов работы составляет всю работу, равную 1.

Совместно рабочие работали 9 часов.

Значит, на весь заказ ушло 9 + 1 = 10 часов .

Ответ: 10

Задача 5 Один мастер может выполнить заказ за 36 часов, а другой — за 12 часов. За сколько часов выполнят заказ оба мастера, работая вместе? Пусть х это время, за которое мастера выполнят работу вместе. Производительность первого 1/36 (заказа в час),  второго 1/12 (заказа в час),  этот  вывод мы сделали из условия задачи.

Задача 5

  • Один мастер может выполнить заказ за 36 часов, а другой — за 12 часов. За сколько часов выполнят заказ оба мастера, работая вместе?

Пусть х это время, за которое мастера выполнят работу вместе.

Производительность первого 1/36 (заказа в час),

второго 1/12 (заказа в час),  этот  вывод мы сделали из условия задачи.

При совместной работе производительности складываются: Ответ: 9
  • При совместной работе производительности складываются:

Ответ: 9

Задача 6 В помощь садовому насосу, перекачивающему 9 литров воды за 4 минуты, подключили второй насос, перекачивающий тот же объем воды за 6 минуты. Сколько минут эти два насоса должны работать совместно, чтобы перекачать 30 литров воды? Сразу,  исходя из условия, можно определить производительности насосов:  у первого 9/4 (литра в минуту), у второго 9/6 (литра в минуту). Пусть совместно они будут работать х  минут.  Ответ: 8

Задача 6

  • В помощь садовому насосу, перекачивающему 9 литров воды за 4 минуты, подключили второй насос, перекачивающий тот же объем воды за 6 минуты. Сколько минут эти два насоса должны работать совместно, чтобы перекачать 30 литров воды?

Сразу,  исходя из условия, можно определить производительности насосов: 

у первого 9/4 (литра в минуту), у второго 9/6 (литра в минуту).

Пусть совместно они будут работать х  минут. 

Ответ: 8

Задача 7 Петя и Ваня выполняют одинаковый тест. Петя отвечает за час на 12 вопросов теста, а Ваня — на 20. Они одновременно начали отвечать на вопросы теста, и Петя закончил свой тест позже Вани на 90 минут. Сколько вопросов содержит тест? В данной задаче производительности даны:  у Пети 12 (вопросов в час), у Вани 20.  Количество вопросов это и есть работа, принимаем за её за х.

Задача 7

  • Петя и Ваня выполняют одинаковый тест. Петя отвечает за час на 12 вопросов теста, а Ваня — на 20. Они одновременно начали отвечать на вопросы теста, и Петя закончил свой тест позже Вани на 90 минут. Сколько вопросов содержит тест?

В данной задаче производительности даны:

у Пети 12 (вопросов в час), у Вани 20.

Количество вопросов это и есть работа, принимаем за её за х.

Петя закончил свой тест на 90 минут позже Вани, то есть Петя затратил больше времени. Не забываем перевести минуты в часы: 90 минут это 1,5 часа. Ответ:45
  • Петя закончил свой тест на 90 минут позже Вани, то есть Петя затратил больше времени.
  • Не забываем перевести минуты в часы: 90 минут это 1,5 часа.

Ответ:45

Задача 8 Через одну трубу бассейн наполняется за 7 часов, а через другую опустошается за 8 часов. За какое время бассейн будет наполнен, если открыть обе трубы? 1 труба p 1 2 труба t 7 A 7 1 Вместе 1 7 ? 8  1 ? 1

Задача 8

  • Через одну трубу бассейн наполняется за 7 часов, а через другую опустошается за 8 часов. За какое время бассейн будет наполнен, если открыть обе трубы?

1 труба

p

1

2 труба

t

7

A

7

1

Вместе

1

7

?

8

1

?

1

Сначала найдем производительность труда совместной работы обеих труб за один час. Поскольку одна труба бассейн наполняет, а другая — опустошает, производительность совместной работы равна разности производительности первой и второй труб: Теперь найдем время, за которое бассейн будет наполнен при открытии обеих труб одновременно. Чтобы найти время работы, надо объем работы разделить на производительность труда: Ответ:56
  • Сначала найдем производительность труда совместной работы обеих труб за один час. Поскольку одна труба бассейн наполняет, а другая — опустошает, производительность совместной работы равна разности производительности первой и второй труб:

Теперь найдем время, за которое бассейн будет наполнен при открытии обеих труб одновременно. Чтобы найти время работы, надо объем работы разделить на производительность труда:

Ответ:56

-80%
Курсы профессиональной переподготовке

Учитель, преподаватель математики

Продолжительность 300 или 600 часов
Документ: Диплом о профессиональной переподготовке
13800 руб.
от 2760 руб.
Подробнее
Скачать разработку
Сохранить у себя:
Презентация по математике "Подготовка к ЕГЭ. Задачи на совместную работу" (0.3 MB)

Комментарии 3

Чтобы добавить комментарий зарегистрируйтесь или на сайт

Елена, 15.02.2016 03:03
Спасибо
Анна, 16.12.2015 21:57
Спасибо.
Tamara, 07.12.2015 10:02
хорошо