Меню
Разработки
Разработки  /  Математика  /  Разное  /  5 класс  /  Межпредметные связи на уроках математики в условиях ФГОС ООО

Межпредметные связи на уроках математики в условиях ФГОС ООО

Стандарт на ступени основного общего образования, должен внести изменения в свою деятельность, в построение урока и его проведение. При проектировании эффективного урока необходимо учитывать особенности реализации межпредметных связей в соответствии с требованиями ФГОС. Представлено обобщение опыта учителя по данной теме.
07.11.2014

Описание разработки

По результатам Международных исследований 2010 г. среди выпускников начальной школы и обучающихся 9 классов, проведенных в 65 странах мира, Россия заняла 37 место по оценке качества математического образования. Каковы причины таких низких результатов? У 70 - 80% обучающихся отсутствовали умения самостоятельной работы; 60% - не умели выделять существенные признаки, понятия, приводить примеры; 70% - заучивали материал в полном объеме на репродуктивном уровне усвоения знаний, вследствие чего выпускники проявили низкий уровень учебной мотивации. Основной проблемой образовательных достижений по математике российских школьников явилось противоречие между высокими предметными знаниями и умениями, с одной стороны, и затруднениями в применении этих знаний в ситуациях, близких к повседневной жизни, а также в работе с информацией, представленной в различной форме. Стандарты второго поколения предъявляют новые, современные требования к учебному процессу. Учитель математики, начинающий реализовывать Стандарт на ступени основного образования, должен внести изменения в свою деятельность, в построение урока и его проведение. При проектировании эффективного урока необходимо учитывать особенности реализации межпредметных связей в соответствии с требованиями ФГОС.

Новый ФГОС ООО призван найти решение задачи, связанной с новым качеством содержания образования. Задача – научить учащегося ориентироваться в этом потоке информации. Важнейшей задачей современной системы образования является формирование совокупности «универсальных учебных действий», имеющей надпредметный характер.

Учителю математики приходится иметь дело с тремя видами межпредметных временных связей: предшествующими, сопутствующими и перспективными.

 - предшествующие межпредметные связи – это связи, когда при изучении материала курса математики опираются на ранее полученные знания по другим предметам.

 - сопутствующие межпредметные связи – это связи, учитывающие тот факт, что ряд вопросов и понятий изучаются как по математике, так и по другим предметам.

 - перспективные межпредметные связи используются, когда изучение материала по математике опережает его применение в других предметах.

В практике работы учителя математики встречаются все эти три вида временных межпредметных связей, но чаще учителя других предметов используют знания учащихся по математике.

Для меня, как учителя математики, при осуществлении межпредметных связей в обучении важное значение имеют отбор для уроков материала, привлекаемого из курсов других учебных дисциплин, и методика его использования. Отбирая для своего урока сведения, которые учащиеся получают при изучении различных предметов, ориентируюсь, прежде всего, на программу и на то, как, в каком объеме эти вопросы представлены в соответствующих школьных учебниках. На основании полученных данных, составляя планы своих уроков для разных классов, фиксирую в них межпредметный материал.

презентация Межпредметные связи на уроках математики в условиях ФГОС ООО

Моя главная задача – создание условий, инициирующих ученические действия.

Для решения этой задачи применяю различные технологии: это внедрение технологий мониторинга, проектная деятельность, научно - исследовательская деятельность, но наиболее эффективными, на мой взгляд, являются информационно - коммуникационные технологии. Знакомлю детей с комплексными работами (на предметной и межпредметной основе), построенными либо на базе литературного текста, либо через постановку учебно - практической (или учебно - познавательной) задачи. Формирование одних и тех же действий на материале разных предметов способствует сначала правильному их выполнению в рамках предмета математики, а затем переносу на новые классы объектов.

При реализации межпредметных связей эффективной формой является мини исследовательская работа по различным предметам, объединенным одной темой. Например, до изучения темы «Меры длины» учащиеся получают задания провести небольшие исследования по русскому языку (изучить происхождение слов), по литературе (найти произведения, в которых используются различные меры длины), по математике (выяснить значение величины длин). Результатом этой деятельности является публичная презентация исследовательских работ с использованием интерактивной доски.

Обращение к справочникам и дополнительной литературе, поиск информации в интернете формирует у учащихся информационные познавательные УУД. Интересную информацию, найденную учащимися использую при выполнении различных творческих заданий. Например: выполните действия, запишите в таблицу букву, соответствующую полученному результату. Полученное слово означает название самого короткого в мире алфавита. В нем насчитывается 11 букв, и он используется жителями Папуа Новой Гвинеи. Сколько букв содержится в русском алфавите? Где расположена Новая Гвинея? Такими вопросами выявляю различные межпредметные знания.

Математика и литература

 “Математик, который не является отчасти поэтом, никогда не достигнет совершенства в математике”, - писал выдающийся немецкий математик Карл Вейерштрасс.

Сказка, поэзия… Казалось бы, сказка и математика – понятия несовместимые. Яркий сказочный образ и сухая абстрактная мысль! Но сказочные задачи усиливают интерес к математике. Это очень важно для учащихся 5 - 6 классов. Ребята сами пишут сказки: “Математическое королевство”, “Страна отрицательных чисел”, “Алиса в Дробном царстве”, “Путешествие Нуля” и т. д. Очень интересными получаются сочинения на темы: “ За что я люблю или не люблю математику”, “Математика в профессии моих родителей”, “Этот прекрасный геометрический мир”.

Многие ученые, занимавшиеся исследованиями в области математики, были не только математиками, но физиками и химиками, как И. Ньютон, Б. Паскаль и Л. Эйлер, и даже поэтами.

Например, математик Чарльз Л. Доджсон, известный больше под псевдонимом Льюис Кэрролл как автор сказки «Алиса в стране чудес». Как рассказывают биографы, королева Виктория пришла в восторг от этой книги и захотела прочитать все книги, написанные Кэрроллом. Можно представить ее разочарование, когда она увидела на своем столе стопку книг по математике. И даже известная нам математик - женщина C. В. Ковалевская обладала незаурядным литературным талантом. Ее перу принадлежат такие произведения как драма «Борьба за счастье», роман «Нигилистка» и другие.

 Эти произведения показывают ученикам красоту не только самой математики, но и поэзии, прозы и других литературных сочинений.

Математика и русский язык

В качестве сопутствующих межпредметных связей в процессе преподавания математики и русского

•Предлагаю учителю русского языка дать подобные задания на его уроках. Время изучения материала совпадает. Возможно, дать общее домашнее задание по русскому языку и математике, а затем оценить отдельно по каждому предмету. Учащимся нравиться необычность подобного задания, что вызывает дополнительный интерес.

 Приведу один частный пример. Очень часто ученики в слове «длина» пишут удвоенное «н». Имеет смысл разъяснить, что существуют слова «длина» и «длинна», но первое – это имя существительное и означает величину предмета, второе – краткое прилагательное, обозначающее свойство предмета (например, «дорога длинна»).

При изучении темы « Дроби» для учеников будет интересной информация о том, что в русском языке слово дробь появилось в VIII веке, и происходит от глагола «дробить» — разбивать, ломать на части. В первых учебниках математики (в VII веке) дроби так и назывались — «ломаные числа». У других народов название дроби также связано с глаголами «ломать», «разбивать», «раздроблять». Домашним заданием может быть нахождение значение слова «дробь» в различных словарях.

Весь материал – смотрите архив.

-80%
Курсы повышения квалификации

Методика преподавания математики в соответствии с ФГОС ООО (СОО)

Продолжительность 72 часа
Документ: Удостоверение о повышении квалификации
4000 руб.
800 руб.
Подробнее
Скачать разработку
Сохранить у себя:
Межпредметные связи на уроках математики в условиях ФГОС ООО (18.76 MB)

Комментарии 0

Чтобы добавить комментарий зарегистрируйтесь или на сайт