Введение | 3 |
Основная часть. Часть I. Софизм как путь к открытиям | 4 |
История создания софизмов | 4 |
Виды софизмов | 5 |
Часть II. Составление собственных софизмов | 11 |
Заключение | 12 |
Список используемой литературы | 13 |
Приложение | 14 |
Введение
В развитии математики софизмы сыграли большую роль. Они повлияли на строгость математических рассуждений и помогли более глубокому осмыслению математических понятий и методов. В этой связи знаменитый ученый И. П. Павлов заметил, что «правильная понятая ошибка прокладывает путь к открытиям». Математическим софизмом принято называть удивительные утверждения, в доказательствах которых кроются незаметные, подчас и довольно тонкие ошибки. В математических софизмах применяются «запрещенные» действия (например, деление на 0) или не учитывается невозможность применения теоремы, формулы или правила в рассматриваемом случаи. Иногда в софизмах используются неверно построенные чертежи или другие ошибки.
Софизм (от греч, σόφισμα, «мастерство, умение, хитрая выдумка, уловка»)
- ложное умозаключение, которое тем не менее при поверхностном рассмотрении кажется правильным. Софизм основан на преднамеренном, сознательном нарушении логики.
Цель исследования: дать определение «софизм», узнать как они появились, определить сферу его применения, научиться распознавать софизмы.
Задачи исследования:
Рассмотреть исторические сведения о «софизмах».
Узнать, какие бывают софизмы;
Привести примеры софизмов;
Ознакомиться с психологическими особенностями человека применяющего софизмы, который с помощью любых приемов отстаивает свои убеждения, не считаясь верны они или нет.
Составление собственных софизмов.
Объект исследования: софизмы.
Методы исследования:
- метод наблюдения
- описательный метод;
- сравнительно-типологический метод;
- семантический метод;
Гипотеза: изучение и разбор софизмов помогает развивать логическое мышление, развивает внимание, интуицию, наблюдательность, прививает навыки правильного мышления, умение переносить полученные знания на нестандартные жизненные ситуации и реализовывать их в процессе обучения.
«Правильная понятая ошибка прокладывает путь к открытиям». И. П. Павлов.
Часть I. Софизм как путь к открытиям
Аристотель называл софизмом «мнимые доказательства», в которых обоснованность заключения кажущаяся и обязана чисто субъективному впечатлению, вызванному недостаточностью логического или семантического анализа. Убедительность на первый взгляд многих софизмов, их «логичность» обычно связана с хорошо замаскированной ошибкой — семиотической. За счёт метафоричности речи, омонимии или полисемии слов, амфиболий и прочих, нарушающих однозначность мысли и приводящих к смешению значений терминов, или же логической: подмена основной мысли (тезиса) доказательства, принятие ложных посылок за истинные, несоблюдение допустимых способов рассуждения (правил логического вывода), использование «неразрешённых» или даже «запрещённых» правил или действий, например деления на нуль в математических софизмах (последнюю ошибку можно считать и семиотической, так как она связана с соглашением о «правильно построенных формулах») происходит нарушение правил логики.
Вот один из древних софизмов («рогатый»), приписываемый Эвбулиду: «Что ты не терял, то имеешь. Рога ты не терял. Значит, у тебя рога». Здесь маскируется двусмысленность большей посылки. Если она мыслится универсальной: «Всё, что ты не терял…», то вывод логически безупречен, но неинтересен, поскольку очевидно, что большая посылка ложна; если же она мыслится частной, то заключение не следует логически. Последнее, однако, стало известно лишь после того, как Аристотель создал логику.
Исторически с понятием «софизм» неизменно связывают идею о намеренной фальсификации, руководствуясь признанием Протагора, что задача софиста — представить наихудший аргумент как наилучший путём хитроумных уловок в речи, в рассуждении, заботясь не об истине, а об успехе в споре или о практической выгоде. (Известно, что сам Протагор оказался жертвой «софизма Эватла».)
По-видимому, первыми, кто понял важность семиотического анализа софизмов, были сами софисты. Учение о речи, о правильном употреблении имён Продик считал важнейшим. Анализ и примеры софизмов часто встречаются в диалогах Платона. Аристотель написал специальную книгу «О софистических опровержениях», а математик Евклид — «Псевдарий» — своеобразный каталог софизмов в геометрических доказательств.
Виды софизмов. Логические
Так как обычно вывод может быть выражен в силлогистической форме, то и всякий софизм может быть сведён к нарушению правил силлогизма. Наиболее типичными источниками логических софизмов являются следующие нарушения правил силлогизма:
Вывод с отрицательной меньшей посылкой в первой фигуре: «Все люди суть разумные существа, жители планет не суть люди, следовательно, они не суть разумные существа»;
Вывод с утвердительными посылками во второй фигуре: «Все, находящие эту женщину невинной, должны быть против наказания её; вы — против наказания её, значит, вы находите её невинной»;
Вывод с общим заключением в третьей фигуре: «Закон Моисеев запрещал воровство, закон Моисеев потерял свою силу, следовательно, воровство не запрещено»;
Особенно распространённая ошибка quaternio terminorum, то есть употребление среднего термина в большой и в меньшей посылке не в одинаковом значении: «Все металлы — простые тела, бронза — металл: бронза — простое тело» (здесь в меньшей посылке слово «металл» употреблено не в точном химическом значении слова, обозначая сплав металлов): отсюда в силлогизме получаются четыре термина.
Терминологические
Грамматические, терминологические и риторические источники софизмов выражаются в неточном или неправильном словоупотреблении и построении фразы (всякое quaternio terminorum предполагает такое словоупотребление); наиболее характерные: ошибка гомонимия (aequivocatio), например: реакция, в смысле химическом, биологическом и историческом; доктор это как врач и как учёная степень.
Ошибка сложения — когда разделительному термину придается значение собирательного. Все углы треугольника больше 2 π в том смысле, что сумма меньше 2 π. Ошибка разделения, обратная, когда собирательному термину дается значение разделительного: "все углы треугольника равны 2 π" в смысле "каждый угол равен сумме 2 прямых углов". Ошибка ударения, когда подчёркивание повышением голоса в речи и курсивом в письме определенного слова или нескольких слов во фразе искажает её первоначальный смысл. Ошибка выражения, заключающаяся в неправильном или неясном для уразумения смысла построении фразы, например: сколько будет: дважды два плюс пять? Здесь трудно решить имеется ли в виду 2*2+5=9 или 2*(2+5)=14.
Более сложные софизмы проистекают из неправильного noстроения целого сложного хода доказательств, где логические ошибки являются замаскированными неточностями внешнего выражения. Сюда относятся:
petitio principii: введение заключения, которое требуется доказать, в скрытом виде в доказательство в качестве одной из посылок. Если мы, например, желая доказать безнравственность материализма, будем красноречиво настаивать на его деморализующем влиянии, не заботясь дать отчет, почему именно он — безнравственная теория, то наши рассуждения будут заключать в себе petitio principii. Ignoratio elenchi заключается в том, что мы, возражая на чье-нибудь мнение, направляем нашу критику не на те аргументы, которые ей подлежат, а на мнения, которые мы ошибочно приписываем нашим противникам. A dicto secundum ad dictum simpliciter представляет заключение от сказанного с оговоркой к утверждению, не сопровождаемому этой оговоркой. Non sequitur представляет отсутствие внутренней логической связи в ходе рассуждения: всякое беспорядочное следование мыслей представляет частный случай этой ошибки.
Психологические
Психологические причины софизмов бывают троякого рода: интеллектуальные, аффективные и волевые. Во всяком обмене мыслей предполагается взаимодействие между 2 лицами, читателем и автором или лектором и слушателем, или двумя спорящими. Убедительность софизма предполагает два фактора: α — психические свойства одной и β — другой из обменивающихся мыслями сторон. Правдоподобность софизма зависит от ловкости того, кто защищает его, и уступчивости оппонента, а эти свойства зависят от различных особенностей обеих индивидуальностей.
Интеллектуальные причины
Интеллектуальные причины софизма заключаются в преобладании в уме лица, поддающегося софизму, ассоциаций по смежности над ассоциациями по сходству, в отсутствии развития способности управлять вниманием, активно мыслить, в слабой памяти, непривычке к точному словоупотреблению, бедности фактических знаний по данному предмету, лености в мышлении (ignava ratio). Обратные качества, разумеется, являются наиболее выгодными для лица, защищающего софизм: обозначим первые отрицательные качества через b, вторые соответствующие им положительные через а.
Аффективные причины
Сюда относятся трусость в мышлении — боязнь опасных практических последствий, вытекающих от принятия известного положения; надежда найти факты, подтверждающие ценные для нас взгляды, побуждающая нас видеть эти факты там, где их нет, любовь и ненависть, прочно ассоциировавшиеся с известными представлениями. Желающий обольстить ум своего соперника софист должен быть не только искусным диалектиком, но и знатоком человеческого сердца, умеющим виртуозно распоряжаться чужими страстями для своих целей. Обозначим аффективный элемент в душе искусного диалектика, который распоряжается им как актёр, чтобы тронуть противника, через с, а те страсти, которые пробуждаются в душе его жертвы и омрачают в ней ясность мышления через d. Аrgumentum ad homuiem, вводящий в спор личные счеты, и argumentum ad populum, влияющий на аффекты толпы, представляют типичные софизмы с преобладанием аффективного элемента.
Волевые причины
При обмене мнений мы воздействуем не только на ум и чувства собеседника, но и на его волю. Во всякой аргументации (особенно устной) есть элемент волевой — императивный — элемент внушения. Категоричность тона, не допускающего возражения, определенная мимика e действуют неотразимым образом на лиц, легко поддающихся внушению, особенно на массы, с другой стороны, пассивность f слушателя особенно благоприятствует успешности аргументации противника. Таким образом, всякий софизм предполагает взаимоотношение между шестью психическими факторами: a + b + c + d + e + f. Успешность софизма определяется величиной этой суммы, в которой (a + с + е) составляет показатель силы диалектика, (b + d + f) есть показатель слабости его жертвы. Прекрасный психологический анализ софистики дает Шопенгауэр в своей "Эристике" (перевод книги Д. Н. Цертелева). Само собой разумеется, что логические, грамматические и психологические факторы теснейшим образом связаны между собой.
Математические
Математический софизм – удивительное утверждение, в доказательстве которого кроются незаметные, а подчас и довольно тонкие ошибки. Софизмы появились еще в Древней Греции. Они тесно связаны с философской деятельностью софистов — платных учителей мудрости, учивших всех желающих философии, логике и, особенно, риторике (науке и искусству красноречия). Одна из основных задач софистов заключалась в том, чтобы научить человека доказывать (подтверждать или опровергать) все, что угодно, выходить победителем из любого интеллектуального состязания. Для этого они разрабатывали разнообразные логические, риторические и психологические приемы. К логическим приемам нечестного, но удачного ведения дискуссии и относятся софизмы. Однако, одних только софизмов для победы в любом споре недостаточно. Ведь если объективная истина окажется не на стороне спорящего, то он, в любом случае, проиграет полемику, несмотря на все свое софистическое искусство. Это хорошо понимали и сами софисты.
Поэтому помимо различных логических, риторических и психологических уловок в их арсенале была важная философская идея (особенно дорогая для них), состоявшая в том, что никакой объективной истины не существует: сколько людей, столько и истин.
Софисты утверждали, что все в мире субъективно и относительно. Если признать эту идею справедливой, то тогда софистического искусства будет вполне достаточно для победы в любой дискуссии: побеждает не тот, кто находится на стороне истины, а тот, кто лучше владеет приемами полемики.
Алгебра — один из больших разделов математики, принадлежащий наряду с арифметикой и геометрией к числу старейших ветвей этой науки. Задачи, а также методы, отличающие её от других отраслей математики, создавались постепенно, начиная с древности. Алгебра возникла под влиянием нужд общественной практики, в результате поисков общих приёмов для решения однотипных арифметических задач.
Приёмы эти заключаются обычно в составлении и решении уравнений, т.е. алгебраические софизмы – намеренно скрытые ошибки в уравнениях и числовых выражениях.
Примеры алгебраических софизмов
Дважды два – пять! Очевидно что: 4:4=5:5 вынесем общий множитель 4(1:1)=5(1:1) сократим общие множители 4=5 или 2х2=5.
Единица равна нулю
Возьмем уравнение х-а=0, разделим обе части уравнения на (х-а), получаем (х-а)/(х-а)=0/(х-а) и отсюда 1=0.
«Докажем» что все числа равны между собой:
Предположим что a и b
- произвольные числа и пусть, тогда существует такое положительное число c, что a=b+c. Умножим это равенство на a–b и преобразуем полученное равенство: a2-ab=ab+ac-b2-bca2-ab-ac=ab-b2-bca(a-b-c)=b(a-b-c)a=b
Геометрические софизмы
Геометрические софизмы – это умозаключения или рассуждения, обосновывающие какую-нибудь заведомую нелепость, абсурд или парадоксальное утверждение, связанное с геометрическими фигурами и действиями над ними.
Примеры геометрических софизмов
«Из точки на прямой можно опустить два перпендикуляра». Попытаемся "доказать", что через точку, лежащую вне прямой, к этой прямой можно провести два перпендикуляра. С этой целью возьмем треугольник АВС. На сторонах АВ и ВС этого треугольника, как на диаметрах, построим полуокружности. Пусть эти полуокружности пересекаются со стороной АС в точках Е и D. Соединим точки Е и D прямыми с точкой В. Угол АЕВ прямой, как вписанный, опирающийся на диаметр; угол ВDС также прямой. Следовательно, ВЕ перпендикулярна АС и ВD перпендикулярна АС. Через точку В проходят два перпендикуляра к прямой АС.
Арифметические софизмы
Арифметика - наука о числах, в первую очередь о натуральных (целых положительных) числах и (рациональных) дробях, и действиях над ними. Так что же такое арифметические софизмы? Арифметические софизмы – это числовые выражения, имеющие неточность или ошибку, не заметную с первого взгляда.
Примеры арифметических софизмов
1=2.
Никто не станет возражать, что 3-1=6-4.
Умножим обе части равенства на (-1): 1-3=4-6, прибавим к обеим частям равенства одно и тоже число, (9/4):1-3+9/4=4-6 +9/4, и замечаем что обе части равенства представляют собой квадраты разностей: (1-3/2)2=(2-3/2)2. Извлечем из обеих частей квадратный корень: 1-3/2=2-3/2, и теперь к каждой части прибавим 3/2, имеем 1=2.
Один рубль не равен ста копейкам.
1 р.= 100 коп.
10 р.= 1000 коп.
Умножим обе части этих верных равенств, получим:
10 р.= 100000 коп., откуда следует: 1 р.= 10000 коп., т.е. 1 р. не равен 100 коп.
Логические софизмы
Кроме математических софизмов, существует множество других. Понять абсурдность таких утверждений проще, но от этого они не становятся менее интересными. Очень многие софизмы выглядят как лишенная смысла и цели игра с языком; игра, опирающаяся на многозначность языковых выражений, их неполноту, недосказанность, зависимость их значений от контекста и т.д. Эти софизмы кажутся особенно наивными и несерьезными.
Пример логический софизмов
«Лекарство, принимаемое больным, есть добро. Чем больше делать добра, тем лучше. Значит, лекарств нужно принимать как можно больше».
«Вор не желает приобрести ничего дурного. Приобретение хорошего есть дело хорошее. Следовательно, вор желает хорошего».
Самое быстрое существо не способно догнать самое медленное, быстроногий Ахиллес никогда не настигнет медлительную черепаху. Пока Ахиллес добежит до черепахи, она продвинется немного вперед. Он быстро преодолеет и это расстояние, но черепаха уйдет еще чуточку вперед. И так до бесконечности. Всякий раз, когда Ахиллес будет достигать места, где была перед этим черепаха, она будет оказываться хотя бы немного, но впереди.
«Эта собака имеет детей, значит, она — отец. Но это твоя собака. Значит, она твой отец. Ты её бьёшь, значит, ты бьёшь своего отца и ты — брат щенят».
«Что ты не терял, то имеешь. Рога ты не терял. Значит, у тебя рога».
Основные ошибки в софизмах
деление на 0;
неправильные выводы из равенства дробей;
неправильное извлечение квадратного корня из квадрата выражения;
нарушения правил действия с именованными величинами;
путаница с понятиями “равенства” и “эквивалентность” в отношении множеств;
проведение преобразований над математическими объектами, не имеющими смысла;
неравносильный переход от одного неравенства к другому;
выводы и вычисления по неверно построенным чертежам;
ошибки, возникающие при операциях с бесконечными рядами и предельным переходом.
О математических софизмах можно говорить бесконечно много, как и о математике в целом. Изо дня в день рождаются новые парадоксы, некоторые из них останутся в истории, а некоторые просуществуют один день.
Часть II. Составление собственных софизмов
Понять софизм, то есть решить его, получается не сразу. Поначалу, чтобы решить некоторые софизмы, приходилось по многу раз их внимательно перечитывать, вдумываться и всматриваться. Вообще, решение софизмов – интересное и познавательное занятие. Им можно заниматься как целенаправленно, так и в свободное время для собственного удовольствия, как например решение сканвордов или судоку.
Софизмом называется умышленно ложное умозаключение, которое имеет видимость правильного. Каков бы ни был софизм, он обязательно содержит одну или несколько замаскированных ошибок.
Разбор софизмов, прежде всего, развивает логическое мышление, т.е. прививает навыки правильного мышления. Обнаружить ошибку в софизме - это значит осознать ее, а осознание ошибки предупреждает от повторения ее в других математических рассуждениях. Помните, что важно добиться отчетливого понимания ошибок, иначе софизмы будут бесполезны.
По ходу работы я составил собственные примеры софизмов:
Дважды два – шесть! Очевидно что: 4:4=6:6 вынесем общий множитель 4(1:1)=6(1:1) сократим общие множители 4=6 или 2х2=6.
7 есть 4+3 («два и три»). Два — число чётное, три — нечётное, выходит, что семь — число и чётное и нечётное.
Возьмем уравнение х-6=0, разделим обе части уравнения на (х-6), получаем
(х-6)/(х-6)=0/(х-6) и отсюда 1=0.
Если равны половины, значит, равны и целые. Следовательно, пустое есть то же, что и полное.
«Что от нас дальше Луна или Америка? Конечно же Америка, ведь Луну отсюда видно, а Америку нет!».
«Один человек пожилого возраста доказывает, что сила его несмотря на преклонные годы, ничуть не уменьшилась: В юности и молодости я не мог поднять штангу весом в 180 кг и сейчас не могу, стало быть сила моя осталась прежней».
«Зачем человеку уши? Чтобы защитить глаза от солнца. Странно – это глаза для того чтобы видеть, а уши - для того, чтобы слышать. На самом деле это не так. Уши ведь держат очки, и если их не было, то очки не держались бы на глазах. Следовательно, уши нужны для того, чтобы видеть.
«Знаешь ли ты, о чём я хочу тебя спросить?» — «Нет». — «Знаешь ли ты, что добродетель есть добро?» — «Знаю». — «Об этом я и хотел тебя спросить. А ты, выходит, не знаешь то, что знаешь».
Заключение
Таким образом, мы пришли к выводу, что софизмы - это смесь математики и логики, поэтому они помогают не только развивать логику, но и лучше понимать математику в целом.
Хорошо развитое логическое мышление может помочь не только в решении задач, но и в обычной жизни.
В современном мире есть много людей, так или иначе употребляющих софизмы в обычной жизни, даже не зная, что это такое. Есть же и такие люди, которые целенаправленно изучают софизмы, например политики или средств массовой информации, чтобы вводить людей в заблуждение, или просто развить свои навыки логики и правильности рассуждений. При решении таких задач развивается не только логическое мышление, но и интуиция. Обнаружить ошибку в софизме - это значит осознать ее, а осознание ошибки предупреждает от повторения ее в других математических рассуждениях. Важно добиться отчетливого понимания ошибок, иначе софизмы будут бесполезны.
Используемая литература
1 | Ахманов А. С. Логическое учение Аристотеля. - Издательство: Едиториал УРСС, 2002 ISBN:5-354-00044-0 |
2 | Брадис В. М., Минковский В. Л., Харчева Л. К. «Ошибки в математических рассуждениях» М. Учпедгиз 1959г. 176с. |
3 | «Софизмы. Алгебра. Геометрия. Тригонометрия» Т.Н. Михеева. - Издательство: Грамотей, 2007. - 64 с. ISBN: 5-89769-060-X |
4 | История философской мысли. Учебное пособие для учащихся. А.А. Афанасьева. - М.: Основы православной культуры, 2005. - 200 с. |
5 | Материал из Википедии — свободной энциклопедии. |
6 | «Софизмы. Алгебра. Геометрия. Тригонометрия» Т.Н. Михеева. - Издательство: Грамотей, 2007. - 64 с. ISBN: 5-89769-060-X |
7 | «Софистика» Чернышев Б. – М.: 2005. – 176 с. |
8 | Кордемский Б. А., Ахадов А. А. Удивительный мир чисел.- М.: «Просвещение», 1986. - 144 с. |
9 | Пельман Я. И. «Занимательная математика» 1927, с.97 |
14